
Networks and
Community Structure

Community Structure

in
cr

ea
si

ng
ly

la
rg

e
co

m
po

ne
nt

s
(c

on
ne

ct
ed

su
bs

et
s

of
ve

rt
ic

es
),

w
hi

ch
ar

e
ta

ke
n

to
be

th
e

co
m

m
un

iti
es

. B
ec

au
se

th
e

co
m

po
ne

nt
s

ar
e

pr
op

er
ly

ne
st

ed
, t

he
y

al
l c

an
be

re
pr

es
en

te
d

by
us

in
g

a
tr

ee

of
th

e
ty

pe
sh

ow
n

in
Fi

g.
2,

in
w

hi
ch

th
e

lo
w

es
t l

ev
el

at
w

hi
ch

tw
o

ve
rt

ic
es

ar
e

co
nn

ec
te

d
re

pr
es

en
ts

th
e

st
re

ng
th

of
th

e
ed

ge
th

at

re
su

lte
d

in
th

ei
r

fir
st

be
co

m
in

g
m

em
be

rs
of

th
e

sa
m

e
co

m
m

u-

ni
ty

. A
‘‘s

lic
e’

’ t
hr

ou
gh

th
is

tr
ee

at
an

y
le

ve
l g

iv
es

th
e

co
m

m
u-

ni
tie

s
th

at
ex

is
te

d
ju

st
be

fo
re

an
ed

ge
of

th
e

co
rr

es
po

nd
in

g

w
ei

gh
t

w
as

ad
de

d.
T

re
es

of
th

is
ty

pe
ar

e
so

m
et

im
es

ca
lle

d

de
nd

ro
gr

am
s

in
th

e
so

ci
ol

og
ic

al
lit

er
at

ur
e.

M
an

y
di

ff
er

en
t

w
ei

gh
ts

ha
ve

be
en

pr
op

os
ed

fo
r

us
e

w
ith

hi
er

ar
ch

ic
al

cl
us

te
ri

ng
al

go
ri

th
m

s.
O

ne
po

ss
ib

le
de

fin
iti

on
of

th
e

w
ei

gh
t

is
th

e
nu

m
be

r
of

no
de

-in
de

pe
nd

en
t

pa
th

s
be

tw
ee

n
ve

r-

tic
es

. T
w

o
pa

th
s

th
at

co
nn

ec
t t

he
sa

m
e

pa
ir

of
ve

rt
ic

es
ar

e
sa

id

to
be

no
de

-in
de

pe
nd

en
t i

f t
he

y
sh

ar
e

no
ne

of
th

e
sa

m
e

ve
rt

ic
es

ot
he

r
th

an
th

ei
r

in
iti

al
an

d
fin

al
ve

rt
ic

es
. O

ne
ca

n
si

m
ila

rl
y

al
so

co
un

t e
dg

e-
in

de
pe

nd
en

t p
at

hs
. I

t i
s k

no
w

n
(2

0)
th

at
th

e
nu

m
be

r

of
no

de
-in

de
pe

nd
en

t
(e

dg
e-

in
de

pe
nd

en
t)

pa
th

s
be

tw
ee

n
tw

o

ve
rt

ic
es

i a
nd

j i
n

a
gr

ap
h

is
eq

ua
l t

o
th

e
m

in
im

um
nu

m
be

r
of

ve
rt

ic
es

(e
dg

es
)

th
at

m
us

t
be

re
m

ov
ed

fr
om

th
e

gr
ap

h
to

di
sc

on
ne

ct
i a

nd
j f

ro
m

on
e

an
ot

he
r.

T
hu

s
th

es
e

nu
m

be
rs

ar
e

in

a
se

ns
e

a
m

ea
su

re
of

th
e

ro
bu

st
ne

ss
of

th
e

ne
tw

or
k

to
de

le
tio

n

of
no

de
s

(e
dg

es
)

(2
1)

.
N

um
be

rs
of

in
de

pe
nd

en
t

pa
th

s
ca

n
be

co
m

pu
te

d
qu

ic
kl

y
by

us
in

g
po

ly
no

m
ia

l-t
im

e
‘‘m

ax
-f

lo
w

’’
al

go
-

ri
th

m
s

su
ch

as
th

e
au

gm
en

tin
g

pa
th

al
go

ri
th

m
(2

2)
.

A
no

th
er

po
ss

ib
le

w
ay

to
de

fin
e

w
ei

gh
ts

be
tw

ee
n

ve
rt

ic
es

is
to

co
un

t
th

e
to

ta
l

nu
m

be
r

of
pa

th
s

th
at

ru
n

be
tw

ee
n

th
em

(a
ll

pa
th

s,
no

t
ju

st
th

os
e

th
at

ar
e

no
de

-
or

ed
ge

-in
de

pe
nd

en
t)

.

H
ow

ev
er

, b
ec

au
se

th
e

nu
m

be
r o

f p
at

hs
be

tw
ee

n
an

y
tw

o
ve

rt
ic

es

is
in

fin
ite

(u
nl

es
s i

t i
s z

er
o)

, o
ne

ty
pi

ca
lly

w
ei

gh
ts

pa
th

s o
f l

en
gt

h

!
by

a
fa

ct
or

!
!

w
ith

!
sm

al
l,

so
th

at
th

e
w

ei
gh

te
d

co
un

t o
f t

he

nu
m

be
r

of
pa

th
s

co
nv

er
ge

s
(2

3)
.

T
hu

s
lo

ng
pa

th
s

co
nt

ri
bu

te

ex
po

ne
nt

ia
lly

le
ss

w
ei

gh
t

th
an

th
os

e
th

at
ar

e
sh

or
t.

If
A

is
th

e

ad
ja

ce
nc

y
m

at
ri

x
of

th
e

ne
tw

or
k,

su
ch

th
at

A
ij

is
1

if
th

er
e

is
an

ed
ge

be
tw

ee
n

ve
rt

ic
es

i a
nd

j a
nd

0
ot

he
rw

is
e,

th
en

th
e

w
ei

gh
ts

in
th

is
de

fin
iti

on
ar

e
gi

ve
n

by
th

e
el

em
en

ts
of

th
e

m
at

ri
x

W
"

!
!

"
0!

"!
A

#!
"

$I
#

!
A

%#
1 .

[2
]

Fo
r

th
e

su
m

to
co

nv
er

ge
,

w
e

m
us

t
ch

oo
se

!
sm

al
le

r
th

an
th

e

re
ci

pr
oc

al
of

th
e

la
rg

es
t

ei
ge

nv
al

ue
of

A
.

B
ot

h
of

th
es

e
de

fin
iti

on
s o

f t
he

w
ei

gh
ts

gi
ve

re
as

on
ab

le
re

su
lts

fo
r

co
m

m
un

ity
st

ru
ct

ur
e

in
so

m
e

ca
se

s.
In

ot
he

r
ca

se
s

th
ey

ar
e

le
ss

su
cc

es
sf

ul
. I

n
pa

rt
ic

ul
ar

, b
ot

h
ha

ve
a

te
nd

en
cy

to
se

pa
ra

te

si
ng

le
pe

ri
ph

er
al

ve
rt

ic
es

fr
om

th
e

co
m

m
un

iti
es

to
w

hi
ch

th
ey

sh
ou

ld
ri

gh
tly

be
lo

ng
. I

f a
ve

rt
ex

is
, f

or
ex

am
pl

e,
co

nn
ec

te
d

to
th

e

re
st

of
a

ne
tw

or
k

by
on

ly
a

si
ng

le
ed

ge
th

en
, t

o
th

e
ex

te
nt

th
at

it
be

lo
ng

s
to

an
y

co
m

m
un

ity
, i

t s
ho

ul
d

cl
ea

rl
y

be
co

ns
id

er
ed

to

be
lo

ng
to

th
e

co
m

m
un

ity
at

th
e

ot
he

r
en

d
of

th
at

ed
ge

. U
nf

or
-

tu
na

te
ly

,
bo

th
th

e
nu

m
be

rs
of

in
de

pe
nd

en
t

pa
th

s
an

d
th

e

w
ei

gh
te

d
pa

th
co

un
ts

fo
r s

uc
h

ve
rt

ic
es

ar
e

sm
al

l a
nd

he
nc

e
si

ng
le

no
de

s
of

te
n

re
m

ai
n

is
ol

at
ed

fr
om

th
e

ne
tw

or
k

w
he

n
th

e
co

m
-

m
un

iti
es

ar
e

co
ns

tr
uc

te
d.

T
hi

s a
nd

ot
he

r p
at

ho
lo

gi
es

, a
lo

ng
w

ith

po
or

re
su

lts
fr

om
th

es
e

m
et

ho
ds

in
so

m
e

ne
tw

or
ks

w
he

re
th

e

co
m

m
un

ity
st

ru
ct

ur
e

is
w

el
l k

no
w

n
fr

om
ot

he
r s

tu
di

es
, m

ak
e

th
e

hi
er

ar
ch

ic
al

cl
us

te
ri

ng
m

et
ho

d,
al

th
ou

gh
us

ef
ul

, f
ar

fr
om

pe
rf

ec
t.

Ed
ge

‘‘B
et

w
ee

nn
es

s’
’

an
d

Co
m

m
un

it
y

St
ru

ct
ur

e.
T

o
si

de
st

ep
th

e

sh
or

tc
om

in
gs

of
th

e
hi

er
ar

ch
ic

al
cl

us
te

ri
ng

m
et

ho
d,

w
e

he
re

pr
op

os
e

an
al

te
rn

at
iv

e
ap

pr
oa

ch
to

th
e

de
te

ct
io

n
of

co
m

m
un

i-

tie
s.

In
st

ea
d

of
tr

yi
ng

to
co

ns
tr

uc
t a

m
ea

su
re

th
at

te
lls

us
w

hi
ch

ed
ge

s a
re

m
os

t c
en

tr
al

to
co

m
m

un
iti

es
, w

e
fo

cu
s i

ns
te

ad
on

th
os

e

ed
ge

s
th

at
ar

e
le

as
t c

en
tr

al
, t

he
ed

ge
s

th
at

ar
e

m
os

t ‘
‘b

et
w

ee
n’

’

co
m

m
un

iti
es

. R
at

he
r

th
an

co
ns

tr
uc

tin
g

co
m

m
un

iti
es

by
ad

di
ng

th
e

st
ro

ng
es

t e
dg

es
to

an
in

iti
al

ly
em

pt
y

ve
rt

ex
se

t,
w

e
co

ns
tr

uc
t

th
em

by
pr

og
re

ss
iv

el
y

re
m

ov
in

g
ed

ge
s

fr
om

th
e

or
ig

in
al

gr
ap

h.

V
er

te
x

be
tw

ee
nn

es
s h

as
be

en
st

ud
ie

d
in

th
e

pa
st

as
a

m
ea

su
re

of
th

e
ce

nt
ra

lit
y

an
d

in
fl

ue
nc

e
of

no
de

s
in

ne
tw

or
ks

.
Fi

rs
t

pr
op

os
ed

by
Fr

ee
m

an
(2

4)
, t

he
be

tw
ee

nn
es

s c
en

tr
al

ity
of

a
ve

rt
ex

i
is

de
fin

ed
as

th
e

nu
m

be
r

of
sh

or
te

st
pa

th
s

be
tw

ee
n

pa
ir

s
of

ot
he

r v
er

tic
es

th
at

ru
n

th
ro

ug
h

i.
It

is
a

m
ea

su
re

of
th

e
in

fl
ue

nc
e

of
a

no
de

ov
er

th
e

fl
ow

of
in

fo
rm

at
io

n
be

tw
ee

n
ot

he
r

no
de

s,

es
pe

ci
al

ly
in

ca
se

s
w

he
re

in
fo

rm
at

io
n

fl
ow

ov
er

a
ne

tw
or

k

pr
im

ar
ily

fo
llo

w
s

th
e

sh
or

te
st

av
ai

la
bl

e
pa

th
.

T
o

fin
d

w
hi

ch
ed

ge
s i

n
a

ne
tw

or
k

ar
e

m
os

t b
et

w
ee

n
ot

he
r p

ai
rs

of
ve

rt
ic

es
, w

e
ge

ne
ra

liz
e

Fr
ee

m
an

’s
be

tw
ee

nn
es

s
ce

nt
ra

lit
y

to

ed
ge

s a
nd

de
fin

e
th

e
ed

ge
be

tw
ee

nn
es

s o
f a

n
ed

ge
as

th
e

nu
m

be
r

of
sh

or
te

st
pa

th
s

be
tw

ee
n

pa
ir

s
of

ve
rt

ic
es

th
at

ru
n

al
on

g
it.

If

th
er

e
is

m
or

e
th

an
on

e
sh

or
te

st
pa

th
be

tw
ee

n
a

pa
ir

of
ve

rt
ic

es
,

ea
ch

pa
th

is
gi

ve
n

eq
ua

l w
ei

gh
t s

uc
h

th
at

th
e

to
ta

l w
ei

gh
t o

f a
ll

of
th

e
pa

th
s

is
un

ity
.

If
a

ne
tw

or
k

co
nt

ai
ns

co
m

m
un

iti
es

or

gr
ou

ps
th

at
ar

e
on

ly
lo

os
el

y c
on

ne
ct

ed
by

a
fe

w
in

te
rg

ro
up

ed
ge

s,

th
en

al
l s

ho
rt

es
t

pa
th

s
be

tw
ee

n
di

ff
er

en
t

co
m

m
un

iti
es

m
us

t
go

al
on

g
on

e
of

th
es

e
fe

w
ed

ge
s.

T
hu

s,
th

e
ed

ge
s

co
nn

ec
tin

g

co
m

m
un

iti
es

w
ill

ha
ve

hi
gh

ed
ge

be
tw

ee
nn

es
s.

B
y

re
m

ov
in

g

th
es

e
ed

ge
s,

w
e

se
pa

ra
te

gr
ou

ps
fr

om
on

e
an

ot
he

r a
nd

so
re

ve
al

th
e

un
de

rl
yi

ng
co

m
m

un
ity

st
ru

ct
ur

e
of

th
e

gr
ap

h.

T
he

al
go

ri
th

m
w

e
pr

op
os

e
fo

r
id

en
tif

yi
ng

co
m

m
un

iti
es

is

si
m

pl
y

st
at

ed
as

fo
llo

w
s:

Fi
g.

1.
A

sc
he

m
at

ic
re

pr
es

en
ta

ti
on

of
a

ne
tw

or
k

w
it

h
co

m
m

un
it

y
st

ru
ct

ur
e.

In
th

is
ne

tw
or

k
th

er
e

ar
e

th
re

e
co

m
m

un
it

ie
s

of
de

ns
el

y
co

nn
ec

te
d

ve
rt

ic
es

(c
ir

cl
es

w
it

h
so

lid
lin

es
),

w
it

h
a

m
uc

h
lo

w
er

de
ns

it
y

of
co

nn
ec

ti
on

s (
gr

ay
lin

es
)

be
tw

ee
n

th
em

.

Fi
g.

2.
A

n
ex

am
pl

e
of

a
sm

al
l h

ie
ra

rc
hi

ca
l c

lu
st

er
in

g
tr

ee
. T

he
ci

rc
le

s
at

th
e

bo
tt

om
re

pr
es

en
t t

he
ve

rt
ic

es
in

th
e

ne
tw

or
k,

an
d

th
e

tr
ee

sh
ow

s t
he

or
de

r i
n

w
hi

ch
th

ey
jo

in
to

ge
th

er
to

fo
rm

co
m

m
un

it
ie

s
fo

r
a

gi
ve

n
de

fi
ni

ti
on

of
th

e

w
ei

gh
t

W
ij

of
co

nn
ec

ti
on

s
be

tw
ee

n
ve

rt
ex

pa
ir

s.
78

22
"

w
w

w
.p

na
s.

or
g#

cg
i#

do
i#

10
.1

07
3#

pn
as

.1
22

65
37

99

G
ir

va
n

an
d

N
ew

m
an

Community structure is a “natural” division
of a network into groups (communities).

Within a group, the nodes are densely
connected, with only sparse
connections between groups

NB: community structure is (confusingly)
sometimes referred to as “clustering”

What the heck?

This community structure is
sometimes known to the
people in the network.
Sometimes not.

Community structure is a partition: each
node is a member of one and only one
group

Community Structure

in
cr

ea
si

ng
ly

la
rg

e
co

m
po

ne
nt

s
(c

on
ne

ct
ed

su
bs

et
s

of
ve

rt
ic

es
),

w
hi

ch
ar

e
ta

ke
n

to
be

th
e

co
m

m
un

iti
es

. B
ec

au
se

th
e

co
m

po
ne

nt
s

ar
e

pr
op

er
ly

ne
st

ed
, t

he
y

al
l c

an
be

re
pr

es
en

te
d

by
us

in
g

a
tr

ee

of
th

e
ty

pe
sh

ow
n

in
Fi

g.
2,

in
w

hi
ch

th
e

lo
w

es
t l

ev
el

at
w

hi
ch

tw
o

ve
rt

ic
es

ar
e

co
nn

ec
te

d
re

pr
es

en
ts

th
e

st
re

ng
th

of
th

e
ed

ge
th

at

re
su

lte
d

in
th

ei
r

fir
st

be
co

m
in

g
m

em
be

rs
of

th
e

sa
m

e
co

m
m

u-

ni
ty

. A
‘‘s

lic
e’

’ t
hr

ou
gh

th
is

tr
ee

at
an

y
le

ve
l g

iv
es

th
e

co
m

m
u-

ni
tie

s
th

at
ex

is
te

d
ju

st
be

fo
re

an
ed

ge
of

th
e

co
rr

es
po

nd
in

g

w
ei

gh
t

w
as

ad
de

d.
T

re
es

of
th

is
ty

pe
ar

e
so

m
et

im
es

ca
lle

d

de
nd

ro
gr

am
s

in
th

e
so

ci
ol

og
ic

al
lit

er
at

ur
e.

M
an

y
di

ff
er

en
t

w
ei

gh
ts

ha
ve

be
en

pr
op

os
ed

fo
r

us
e

w
ith

hi
er

ar
ch

ic
al

cl
us

te
ri

ng
al

go
ri

th
m

s.
O

ne
po

ss
ib

le
de

fin
iti

on
of

th
e

w
ei

gh
t

is
th

e
nu

m
be

r
of

no
de

-in
de

pe
nd

en
t

pa
th

s
be

tw
ee

n
ve

r-

tic
es

. T
w

o
pa

th
s

th
at

co
nn

ec
t t

he
sa

m
e

pa
ir

of
ve

rt
ic

es
ar

e
sa

id

to
be

no
de

-in
de

pe
nd

en
t i

f t
he

y
sh

ar
e

no
ne

of
th

e
sa

m
e

ve
rt

ic
es

ot
he

r
th

an
th

ei
r

in
iti

al
an

d
fin

al
ve

rt
ic

es
. O

ne
ca

n
si

m
ila

rl
y

al
so

co
un

t e
dg

e-
in

de
pe

nd
en

t p
at

hs
. I

t i
s k

no
w

n
(2

0)
th

at
th

e
nu

m
be

r

of
no

de
-in

de
pe

nd
en

t
(e

dg
e-

in
de

pe
nd

en
t)

pa
th

s
be

tw
ee

n
tw

o

ve
rt

ic
es

i a
nd

j i
n

a
gr

ap
h

is
eq

ua
l t

o
th

e
m

in
im

um
nu

m
be

r
of

ve
rt

ic
es

(e
dg

es
)

th
at

m
us

t
be

re
m

ov
ed

fr
om

th
e

gr
ap

h
to

di
sc

on
ne

ct
i a

nd
j f

ro
m

on
e

an
ot

he
r.

T
hu

s
th

es
e

nu
m

be
rs

ar
e

in

a
se

ns
e

a
m

ea
su

re
of

th
e

ro
bu

st
ne

ss
of

th
e

ne
tw

or
k

to
de

le
tio

n

of
no

de
s

(e
dg

es
)

(2
1)

.
N

um
be

rs
of

in
de

pe
nd

en
t

pa
th

s
ca

n
be

co
m

pu
te

d
qu

ic
kl

y
by

us
in

g
po

ly
no

m
ia

l-t
im

e
‘‘m

ax
-f

lo
w

’’
al

go
-

ri
th

m
s

su
ch

as
th

e
au

gm
en

tin
g

pa
th

al
go

ri
th

m
(2

2)
.

A
no

th
er

po
ss

ib
le

w
ay

to
de

fin
e

w
ei

gh
ts

be
tw

ee
n

ve
rt

ic
es

is
to

co
un

t
th

e
to

ta
l

nu
m

be
r

of
pa

th
s

th
at

ru
n

be
tw

ee
n

th
em

(a
ll

pa
th

s,
no

t
ju

st
th

os
e

th
at

ar
e

no
de

-
or

ed
ge

-in
de

pe
nd

en
t)

.

H
ow

ev
er

, b
ec

au
se

th
e

nu
m

be
r o

f p
at

hs
be

tw
ee

n
an

y
tw

o
ve

rt
ic

es

is
in

fin
ite

(u
nl

es
s i

t i
s z

er
o)

, o
ne

ty
pi

ca
lly

w
ei

gh
ts

pa
th

s o
f l

en
gt

h

!
by

a
fa

ct
or

!
!

w
ith

!
sm

al
l,

so
th

at
th

e
w

ei
gh

te
d

co
un

t o
f t

he

nu
m

be
r

of
pa

th
s

co
nv

er
ge

s
(2

3)
.

T
hu

s
lo

ng
pa

th
s

co
nt

ri
bu

te

ex
po

ne
nt

ia
lly

le
ss

w
ei

gh
t

th
an

th
os

e
th

at
ar

e
sh

or
t.

If
A

is
th

e

ad
ja

ce
nc

y
m

at
ri

x
of

th
e

ne
tw

or
k,

su
ch

th
at

A
ij

is
1

if
th

er
e

is
an

ed
ge

be
tw

ee
n

ve
rt

ic
es

i a
nd

j a
nd

0
ot

he
rw

is
e,

th
en

th
e

w
ei

gh
ts

in
th

is
de

fin
iti

on
ar

e
gi

ve
n

by
th

e
el

em
en

ts
of

th
e

m
at

ri
x

W
"

!
!

"
0!

"!
A

#!
"

$I
#

!
A

%#
1 .

[2
]

Fo
r

th
e

su
m

to
co

nv
er

ge
,

w
e

m
us

t
ch

oo
se

!
sm

al
le

r
th

an
th

e

re
ci

pr
oc

al
of

th
e

la
rg

es
t

ei
ge

nv
al

ue
of

A
.

B
ot

h
of

th
es

e
de

fin
iti

on
s o

f t
he

w
ei

gh
ts

gi
ve

re
as

on
ab

le
re

su
lts

fo
r

co
m

m
un

ity
st

ru
ct

ur
e

in
so

m
e

ca
se

s.
In

ot
he

r
ca

se
s

th
ey

ar
e

le
ss

su
cc

es
sf

ul
. I

n
pa

rt
ic

ul
ar

, b
ot

h
ha

ve
a

te
nd

en
cy

to
se

pa
ra

te

si
ng

le
pe

ri
ph

er
al

ve
rt

ic
es

fr
om

th
e

co
m

m
un

iti
es

to
w

hi
ch

th
ey

sh
ou

ld
ri

gh
tly

be
lo

ng
. I

f a
ve

rt
ex

is
, f

or
ex

am
pl

e,
co

nn
ec

te
d

to
th

e

re
st

of
a

ne
tw

or
k

by
on

ly
a

si
ng

le
ed

ge
th

en
, t

o
th

e
ex

te
nt

th
at

it
be

lo
ng

s
to

an
y

co
m

m
un

ity
, i

t s
ho

ul
d

cl
ea

rl
y

be
co

ns
id

er
ed

to

be
lo

ng
to

th
e

co
m

m
un

ity
at

th
e

ot
he

r
en

d
of

th
at

ed
ge

. U
nf

or
-

tu
na

te
ly

,
bo

th
th

e
nu

m
be

rs
of

in
de

pe
nd

en
t

pa
th

s
an

d
th

e

w
ei

gh
te

d
pa

th
co

un
ts

fo
r s

uc
h

ve
rt

ic
es

ar
e

sm
al

l a
nd

he
nc

e
si

ng
le

no
de

s
of

te
n

re
m

ai
n

is
ol

at
ed

fr
om

th
e

ne
tw

or
k

w
he

n
th

e
co

m
-

m
un

iti
es

ar
e

co
ns

tr
uc

te
d.

T
hi

s a
nd

ot
he

r p
at

ho
lo

gi
es

, a
lo

ng
w

ith

po
or

re
su

lts
fr

om
th

es
e

m
et

ho
ds

in
so

m
e

ne
tw

or
ks

w
he

re
th

e

co
m

m
un

ity
st

ru
ct

ur
e

is
w

el
l k

no
w

n
fr

om
ot

he
r s

tu
di

es
, m

ak
e

th
e

hi
er

ar
ch

ic
al

cl
us

te
ri

ng
m

et
ho

d,
al

th
ou

gh
us

ef
ul

, f
ar

fr
om

pe
rf

ec
t.

Ed
ge

‘‘B
et

w
ee

nn
es

s’
’

an
d

Co
m

m
un

it
y

St
ru

ct
ur

e.
T

o
si

de
st

ep
th

e

sh
or

tc
om

in
gs

of
th

e
hi

er
ar

ch
ic

al
cl

us
te

ri
ng

m
et

ho
d,

w
e

he
re

pr
op

os
e

an
al

te
rn

at
iv

e
ap

pr
oa

ch
to

th
e

de
te

ct
io

n
of

co
m

m
un

i-

tie
s.

In
st

ea
d

of
tr

yi
ng

to
co

ns
tr

uc
t a

m
ea

su
re

th
at

te
lls

us
w

hi
ch

ed
ge

s a
re

m
os

t c
en

tr
al

to
co

m
m

un
iti

es
, w

e
fo

cu
s i

ns
te

ad
on

th
os

e

ed
ge

s
th

at
ar

e
le

as
t c

en
tr

al
, t

he
ed

ge
s

th
at

ar
e

m
os

t ‘
‘b

et
w

ee
n’

’

co
m

m
un

iti
es

. R
at

he
r

th
an

co
ns

tr
uc

tin
g

co
m

m
un

iti
es

by
ad

di
ng

th
e

st
ro

ng
es

t e
dg

es
to

an
in

iti
al

ly
em

pt
y

ve
rt

ex
se

t,
w

e
co

ns
tr

uc
t

th
em

by
pr

og
re

ss
iv

el
y

re
m

ov
in

g
ed

ge
s

fr
om

th
e

or
ig

in
al

gr
ap

h.

V
er

te
x

be
tw

ee
nn

es
s h

as
be

en
st

ud
ie

d
in

th
e

pa
st

as
a

m
ea

su
re

of
th

e
ce

nt
ra

lit
y

an
d

in
fl

ue
nc

e
of

no
de

s
in

ne
tw

or
ks

.
Fi

rs
t

pr
op

os
ed

by
Fr

ee
m

an
(2

4)
, t

he
be

tw
ee

nn
es

s c
en

tr
al

ity
of

a
ve

rt
ex

i
is

de
fin

ed
as

th
e

nu
m

be
r

of
sh

or
te

st
pa

th
s

be
tw

ee
n

pa
ir

s
of

ot
he

r v
er

tic
es

th
at

ru
n

th
ro

ug
h

i.
It

is
a

m
ea

su
re

of
th

e
in

fl
ue

nc
e

of
a

no
de

ov
er

th
e

fl
ow

of
in

fo
rm

at
io

n
be

tw
ee

n
ot

he
r

no
de

s,

es
pe

ci
al

ly
in

ca
se

s
w

he
re

in
fo

rm
at

io
n

fl
ow

ov
er

a
ne

tw
or

k

pr
im

ar
ily

fo
llo

w
s

th
e

sh
or

te
st

av
ai

la
bl

e
pa

th
.

T
o

fin
d

w
hi

ch
ed

ge
s i

n
a

ne
tw

or
k

ar
e

m
os

t b
et

w
ee

n
ot

he
r p

ai
rs

of
ve

rt
ic

es
, w

e
ge

ne
ra

liz
e

Fr
ee

m
an

’s
be

tw
ee

nn
es

s
ce

nt
ra

lit
y

to

ed
ge

s a
nd

de
fin

e
th

e
ed

ge
be

tw
ee

nn
es

s o
f a

n
ed

ge
as

th
e

nu
m

be
r

of
sh

or
te

st
pa

th
s

be
tw

ee
n

pa
ir

s
of

ve
rt

ic
es

th
at

ru
n

al
on

g
it.

If

th
er

e
is

m
or

e
th

an
on

e
sh

or
te

st
pa

th
be

tw
ee

n
a

pa
ir

of
ve

rt
ic

es
,

ea
ch

pa
th

is
gi

ve
n

eq
ua

l w
ei

gh
t s

uc
h

th
at

th
e

to
ta

l w
ei

gh
t o

f a
ll

of
th

e
pa

th
s

is
un

ity
.

If
a

ne
tw

or
k

co
nt

ai
ns

co
m

m
un

iti
es

or

gr
ou

ps
th

at
ar

e
on

ly
lo

os
el

y c
on

ne
ct

ed
by

a
fe

w
in

te
rg

ro
up

ed
ge

s,

th
en

al
l s

ho
rt

es
t

pa
th

s
be

tw
ee

n
di

ff
er

en
t

co
m

m
un

iti
es

m
us

t
go

al
on

g
on

e
of

th
es

e
fe

w
ed

ge
s.

T
hu

s,
th

e
ed

ge
s

co
nn

ec
tin

g

co
m

m
un

iti
es

w
ill

ha
ve

hi
gh

ed
ge

be
tw

ee
nn

es
s.

B
y

re
m

ov
in

g

th
es

e
ed

ge
s,

w
e

se
pa

ra
te

gr
ou

ps
fr

om
on

e
an

ot
he

r a
nd

so
re

ve
al

th
e

un
de

rl
yi

ng
co

m
m

un
ity

st
ru

ct
ur

e
of

th
e

gr
ap

h.

T
he

al
go

ri
th

m
w

e
pr

op
os

e
fo

r
id

en
tif

yi
ng

co
m

m
un

iti
es

is

si
m

pl
y

st
at

ed
as

fo
llo

w
s:

Fi
g.

1.
A

sc
he

m
at

ic
re

pr
es

en
ta

ti
on

of
a

ne
tw

or
k

w
it

h
co

m
m

un
it

y
st

ru
ct

ur
e.

In
th

is
ne

tw
or

k
th

er
e

ar
e

th
re

e
co

m
m

un
it

ie
s

of
de

ns
el

y
co

nn
ec

te
d

ve
rt

ic
es

(c
ir

cl
es

w
it

h
so

lid
lin

es
),

w
it

h
a

m
uc

h
lo

w
er

de
ns

it
y

of
co

nn
ec

ti
on

s (
gr

ay
lin

es
)

be
tw

ee
n

th
em

.

Fi
g.

2.
A

n
ex

am
pl

e
of

a
sm

al
l h

ie
ra

rc
hi

ca
l c

lu
st

er
in

g
tr

ee
. T

he
ci

rc
le

s
at

th
e

bo
tt

om
re

pr
es

en
t t

he
ve

rt
ic

es
in

th
e

ne
tw

or
k,

an
d

th
e

tr
ee

sh
ow

s t
he

or
de

r i
n

w
hi

ch
th

ey
jo

in
to

ge
th

er
to

fo
rm

co
m

m
un

it
ie

s
fo

r
a

gi
ve

n
de

fi
ni

ti
on

of
th

e

w
ei

gh
t

W
ij

of
co

nn
ec

ti
on

s
be

tw
ee

n
ve

rt
ex

pa
ir

s.
78

22
"

w
w

w
.p

na
s.

or
g#

cg
i#

do
i#

10
.1

07
3#

pn
as

.1
22

65
37

99

G
ir

va
n

an
d

N
ew

m
an

• family groups
• homophily and triadic closure
• geography
• organizations (e.g.schools,
clubs and teams, firms…)

What are some sources of community
structure?

But why would we care about community structure
in a network?

Community Structure

Sometimes it reveals a deeper underlying social
process...

ref: Moody

Community Structure

…for example, self-segregation

Community Structure
Another example: a coauthorship network for a small
scientific field

Communities are built
around the founders of the
field

Suggests that scholars
are more likely to work
with other people who
studied with their PhD
advisor

Why might that be?

Alternatively,
it might reflect
the underlying
function…

ref: Crossley et al. (PNAS 2013)

Community Structure

…for example, in neural networks

Communities represent
groups of skills that
frequently co-occur in
the job market.

Skill network:
• nodes = skills
• A↔B if a worker has
both skills

Community Structure

May reflect skill synergies
(skills frequently used
together), or may be related
in how they are acquired

In some cases,
community
structure is easy
to detect by
eye...

ref: Lada Adamic

Community Structure

Community Structure

College

High
School

PhD

Family

And if you have
personal
knowledge of a
network, you may
be able to spot
some groups

ref: network of science, Bollen et al (2009)

So we would like to
have a more
scientific way of
dividing the
network up…

But in many cases, communities are much harder
to pick out by eye (or your eyes lie to your)

It can also be difficult
to categorize
individual nodes.

Community Structure

Community Detection
Algorithms

Math fact: a partition is a
division of a set into smaller,

non-overlapping sets.There are lots of ways to do this
(we’ll look at three):

• Graph Partitioning
• Hierarchical Clustering
• Girvan-Newman

General idea: create a partition of the nodes,
based on where the network “naturally” wants to
split

S. Fortunato / Physics Reports 486 (2010) 75–174 91

Fig. 9. Graph partitioning. The dashed line shows the solution of the minimum bisection problem for the graph illustrated, i.e. the partition in two groups
of equal size with minimal number of edges running between the groups. Reprinted figure with permission from Ref. [16].
© 2009, by Springer.

Specifying the number of clusters of the partition is necessary. If one simply imposed a partition with the minimal cut
size, and left the number of clusters free, the solution would be trivial, corresponding to all vertices ending up in the same
cluster, as this would yield a vanishing cut size. Specifying the size is also necessary, as otherwise the most likely solution of
the problem would consist of separating the lowest degree vertex from the rest of the graph, which is quite uninteresting.
This problem can be actually avoided by choosing a different measure to optimize for the partitioning, which accounts for
the size of the clusters. Some of these measures will be briefly introduced at the end of this section.

Graph partitioning is a fundamental issue in parallel computing, circuit partitioning and layout, and in the design ofmany
serial algorithms, including techniques to solve partial differential equations and sparse linear systems of equations. Most
variants of the graph partitioning problem are NP-hard. There are however several algorithms that can do a good job, even
if their solutions are not necessarily optimal [123]. Many algorithms perform a bisection of the graph. Partitions into more
than two clusters are usually attained by iterative bisectioning. Moreover, in most cases one imposes the constraint that the
clusters have equal size. This problem is calledminimum bisection and is NP-hard.

The Kernighan–Lin algorithm [124] is one of the earliest methods proposed and is still frequently used, often in
combination with other techniques. The authors were motivated by the problem of partitioning electronic circuits onto
boards: the nodes contained in different boards need to be linked to each other with the least number of connections. The
procedure is an optimization of a benefit function Q , which represents the difference between the number of edges inside
the modules and the number of edges lying between them. The starting point is an initial partition of the graph in two
clusters of the predefined size: such an initial partition can be random or suggested by some information on the graph
structure. Then, subsets consisting of equal numbers of vertices are swapped between the two groups, so that Q has the
maximal increase. The subsets can consist of single vertices. To reduce the risk to be trapped in local maxima of Q , the
procedure includes some swaps that decrease the function Q . After a series of swaps with positive and negative gains, the
partition with the largest value of Q is selected and used as starting point of a new series of iterations. The Kernighan–Lin
algorithm is quite fast, scaling as O(n2 log n) (n being as usual the number of vertices), if only a constant number of swaps
are performed at each iteration. The most expensive part is the identification of the subsets to swap, which requires the
computation of the gains/losses for any pair of candidate subsets. On sparse graphs, a slightly different heuristic allows to
lower the complexity toO(n2). The partitions found by the procedure are strongly dependent on the initial configuration and
other algorithms can do better. It is preferable to start with a good guess about the sought partition, otherwise the results
are quite poor. Therefore themethod is typically used to improve on the partitions found through other techniques, by using
them as starting configurations for the algorithm. The Kernighan–Lin algorithm has been extended to extract partitions in
any number of parts [125], however the run-time and storage costs increase rapidly with the number of clusters.

Another popular technique is the spectral bisection method [126], which is based on the properties of the spectrum of the
Laplacian matrix. Spectral clustering will be discussed more thoroughly in Section 4.4, here we focus on its application to
graph partitioning.

Every partition of a graph with n vertices in two groups can be represented by an index vector s, whose component si is
+1 if vertex i is in one group and �1 if it is in the other group. The cut size R of the partition of the graph in the two groups
can be written as

R = 1
4
sTLs, (18)

where L is the Laplacianmatrix and sT the transpose of vector s. Vector s can bewritten as s = �
i aivi, where vi, i = 1, . . . , n

are the eigenvectors of the Laplacian. If s is properly normalized, then

R =
⇥

i

a2i �i, (19)

Graph Partitioning: divide the
network into a pre-defined
number of chunks of a pre-
defined size

Example: a 14 node
network, divided in half

Make the cut in a place that
severs the fewest links

Method 1:
Graph Partitioning

4 links

Method 1:
Graph Partitioning

S. Fortunato / Physics Reports 486 (2010) 75–174 91

Fig. 9. Graph partitioning. The dashed line shows the solution of the minimum bisection problem for the graph illustrated, i.e. the partition in two groups
of equal size with minimal number of edges running between the groups. Reprinted figure with permission from Ref. [16].
© 2009, by Springer.

Specifying the number of clusters of the partition is necessary. If one simply imposed a partition with the minimal cut
size, and left the number of clusters free, the solution would be trivial, corresponding to all vertices ending up in the same
cluster, as this would yield a vanishing cut size. Specifying the size is also necessary, as otherwise the most likely solution of
the problem would consist of separating the lowest degree vertex from the rest of the graph, which is quite uninteresting.
This problem can be actually avoided by choosing a different measure to optimize for the partitioning, which accounts for
the size of the clusters. Some of these measures will be briefly introduced at the end of this section.

Graph partitioning is a fundamental issue in parallel computing, circuit partitioning and layout, and in the design ofmany
serial algorithms, including techniques to solve partial differential equations and sparse linear systems of equations. Most
variants of the graph partitioning problem are NP-hard. There are however several algorithms that can do a good job, even
if their solutions are not necessarily optimal [123]. Many algorithms perform a bisection of the graph. Partitions into more
than two clusters are usually attained by iterative bisectioning. Moreover, in most cases one imposes the constraint that the
clusters have equal size. This problem is calledminimum bisection and is NP-hard.

The Kernighan–Lin algorithm [124] is one of the earliest methods proposed and is still frequently used, often in
combination with other techniques. The authors were motivated by the problem of partitioning electronic circuits onto
boards: the nodes contained in different boards need to be linked to each other with the least number of connections. The
procedure is an optimization of a benefit function Q , which represents the difference between the number of edges inside
the modules and the number of edges lying between them. The starting point is an initial partition of the graph in two
clusters of the predefined size: such an initial partition can be random or suggested by some information on the graph
structure. Then, subsets consisting of equal numbers of vertices are swapped between the two groups, so that Q has the
maximal increase. The subsets can consist of single vertices. To reduce the risk to be trapped in local maxima of Q , the
procedure includes some swaps that decrease the function Q . After a series of swaps with positive and negative gains, the
partition with the largest value of Q is selected and used as starting point of a new series of iterations. The Kernighan–Lin
algorithm is quite fast, scaling as O(n2 log n) (n being as usual the number of vertices), if only a constant number of swaps
are performed at each iteration. The most expensive part is the identification of the subsets to swap, which requires the
computation of the gains/losses for any pair of candidate subsets. On sparse graphs, a slightly different heuristic allows to
lower the complexity toO(n2). The partitions found by the procedure are strongly dependent on the initial configuration and
other algorithms can do better. It is preferable to start with a good guess about the sought partition, otherwise the results
are quite poor. Therefore themethod is typically used to improve on the partitions found through other techniques, by using
them as starting configurations for the algorithm. The Kernighan–Lin algorithm has been extended to extract partitions in
any number of parts [125], however the run-time and storage costs increase rapidly with the number of clusters.

Another popular technique is the spectral bisection method [126], which is based on the properties of the spectrum of the
Laplacian matrix. Spectral clustering will be discussed more thoroughly in Section 4.4, here we focus on its application to
graph partitioning.

Every partition of a graph with n vertices in two groups can be represented by an index vector s, whose component si is
+1 if vertex i is in one group and �1 if it is in the other group. The cut size R of the partition of the graph in the two groups
can be written as

R = 1
4
sTLs, (18)

where L is the Laplacianmatrix and sT the transpose of vector s. Vector s can bewritten as s = �
i aivi, where vi, i = 1, . . . , n

are the eigenvectors of the Laplacian. If s is properly normalized, then

R =
⇥

i

a2i �i, (19)

S. Fortunato / Physics Reports 486 (2010) 75–174 91

Fig. 9. Graph partitioning. The dashed line shows the solution of the minimum bisection problem for the graph illustrated, i.e. the partition in two groups
of equal size with minimal number of edges running between the groups. Reprinted figure with permission from Ref. [16].
© 2009, by Springer.

Specifying the number of clusters of the partition is necessary. If one simply imposed a partition with the minimal cut
size, and left the number of clusters free, the solution would be trivial, corresponding to all vertices ending up in the same
cluster, as this would yield a vanishing cut size. Specifying the size is also necessary, as otherwise the most likely solution of
the problem would consist of separating the lowest degree vertex from the rest of the graph, which is quite uninteresting.
This problem can be actually avoided by choosing a different measure to optimize for the partitioning, which accounts for
the size of the clusters. Some of these measures will be briefly introduced at the end of this section.

Graph partitioning is a fundamental issue in parallel computing, circuit partitioning and layout, and in the design ofmany
serial algorithms, including techniques to solve partial differential equations and sparse linear systems of equations. Most
variants of the graph partitioning problem are NP-hard. There are however several algorithms that can do a good job, even
if their solutions are not necessarily optimal [123]. Many algorithms perform a bisection of the graph. Partitions into more
than two clusters are usually attained by iterative bisectioning. Moreover, in most cases one imposes the constraint that the
clusters have equal size. This problem is calledminimum bisection and is NP-hard.

The Kernighan–Lin algorithm [124] is one of the earliest methods proposed and is still frequently used, often in
combination with other techniques. The authors were motivated by the problem of partitioning electronic circuits onto
boards: the nodes contained in different boards need to be linked to each other with the least number of connections. The
procedure is an optimization of a benefit function Q , which represents the difference between the number of edges inside
the modules and the number of edges lying between them. The starting point is an initial partition of the graph in two
clusters of the predefined size: such an initial partition can be random or suggested by some information on the graph
structure. Then, subsets consisting of equal numbers of vertices are swapped between the two groups, so that Q has the
maximal increase. The subsets can consist of single vertices. To reduce the risk to be trapped in local maxima of Q , the
procedure includes some swaps that decrease the function Q . After a series of swaps with positive and negative gains, the
partition with the largest value of Q is selected and used as starting point of a new series of iterations. The Kernighan–Lin
algorithm is quite fast, scaling as O(n2 log n) (n being as usual the number of vertices), if only a constant number of swaps
are performed at each iteration. The most expensive part is the identification of the subsets to swap, which requires the
computation of the gains/losses for any pair of candidate subsets. On sparse graphs, a slightly different heuristic allows to
lower the complexity toO(n2). The partitions found by the procedure are strongly dependent on the initial configuration and
other algorithms can do better. It is preferable to start with a good guess about the sought partition, otherwise the results
are quite poor. Therefore themethod is typically used to improve on the partitions found through other techniques, by using
them as starting configurations for the algorithm. The Kernighan–Lin algorithm has been extended to extract partitions in
any number of parts [125], however the run-time and storage costs increase rapidly with the number of clusters.

Another popular technique is the spectral bisection method [126], which is based on the properties of the spectrum of the
Laplacian matrix. Spectral clustering will be discussed more thoroughly in Section 4.4, here we focus on its application to
graph partitioning.

Every partition of a graph with n vertices in two groups can be represented by an index vector s, whose component si is
+1 if vertex i is in one group and �1 if it is in the other group. The cut size R of the partition of the graph in the two groups
can be written as

R = 1
4
sTLs, (18)

where L is the Laplacianmatrix and sT the transpose of vector s. Vector s can bewritten as s = �
i aivi, where vi, i = 1, . . . , n

are the eigenvectors of the Laplacian. If s is properly normalized, then

R =
⇥

i

a2i �i, (19)

S. Fortunato / Physics Reports 486 (2010) 75–174 91

Fig. 9. Graph partitioning. The dashed line shows the solution of the minimum bisection problem for the graph illustrated, i.e. the partition in two groups
of equal size with minimal number of edges running between the groups. Reprinted figure with permission from Ref. [16].
© 2009, by Springer.

Specifying the number of clusters of the partition is necessary. If one simply imposed a partition with the minimal cut
size, and left the number of clusters free, the solution would be trivial, corresponding to all vertices ending up in the same
cluster, as this would yield a vanishing cut size. Specifying the size is also necessary, as otherwise the most likely solution of
the problem would consist of separating the lowest degree vertex from the rest of the graph, which is quite uninteresting.
This problem can be actually avoided by choosing a different measure to optimize for the partitioning, which accounts for
the size of the clusters. Some of these measures will be briefly introduced at the end of this section.

Graph partitioning is a fundamental issue in parallel computing, circuit partitioning and layout, and in the design ofmany
serial algorithms, including techniques to solve partial differential equations and sparse linear systems of equations. Most
variants of the graph partitioning problem are NP-hard. There are however several algorithms that can do a good job, even
if their solutions are not necessarily optimal [123]. Many algorithms perform a bisection of the graph. Partitions into more
than two clusters are usually attained by iterative bisectioning. Moreover, in most cases one imposes the constraint that the
clusters have equal size. This problem is calledminimum bisection and is NP-hard.

The Kernighan–Lin algorithm [124] is one of the earliest methods proposed and is still frequently used, often in
combination with other techniques. The authors were motivated by the problem of partitioning electronic circuits onto
boards: the nodes contained in different boards need to be linked to each other with the least number of connections. The
procedure is an optimization of a benefit function Q , which represents the difference between the number of edges inside
the modules and the number of edges lying between them. The starting point is an initial partition of the graph in two
clusters of the predefined size: such an initial partition can be random or suggested by some information on the graph
structure. Then, subsets consisting of equal numbers of vertices are swapped between the two groups, so that Q has the
maximal increase. The subsets can consist of single vertices. To reduce the risk to be trapped in local maxima of Q , the
procedure includes some swaps that decrease the function Q . After a series of swaps with positive and negative gains, the
partition with the largest value of Q is selected and used as starting point of a new series of iterations. The Kernighan–Lin
algorithm is quite fast, scaling as O(n2 log n) (n being as usual the number of vertices), if only a constant number of swaps
are performed at each iteration. The most expensive part is the identification of the subsets to swap, which requires the
computation of the gains/losses for any pair of candidate subsets. On sparse graphs, a slightly different heuristic allows to
lower the complexity toO(n2). The partitions found by the procedure are strongly dependent on the initial configuration and
other algorithms can do better. It is preferable to start with a good guess about the sought partition, otherwise the results
are quite poor. Therefore themethod is typically used to improve on the partitions found through other techniques, by using
them as starting configurations for the algorithm. The Kernighan–Lin algorithm has been extended to extract partitions in
any number of parts [125], however the run-time and storage costs increase rapidly with the number of clusters.

Another popular technique is the spectral bisection method [126], which is based on the properties of the spectrum of the
Laplacian matrix. Spectral clustering will be discussed more thoroughly in Section 4.4, here we focus on its application to
graph partitioning.

Every partition of a graph with n vertices in two groups can be represented by an index vector s, whose component si is
+1 if vertex i is in one group and �1 if it is in the other group. The cut size R of the partition of the graph in the two groups
can be written as

R = 1
4
sTLs, (18)

where L is the Laplacianmatrix and sT the transpose of vector s. Vector s can bewritten as s = �
i aivi, where vi, i = 1, . . . , n

are the eigenvectors of the Laplacian. If s is properly normalized, then

R =
⇥

i

a2i �i, (19)

Other divisions require cutting more links

16 links

12 links

8 links

S. Fortunato / Physics Reports 486 (2010) 75–174 91

Fig. 9. Graph partitioning. The dashed line shows the solution of the minimum bisection problem for the graph illustrated, i.e. the partition in two groups
of equal size with minimal number of edges running between the groups. Reprinted figure with permission from Ref. [16].
© 2009, by Springer.

Specifying the number of clusters of the partition is necessary. If one simply imposed a partition with the minimal cut
size, and left the number of clusters free, the solution would be trivial, corresponding to all vertices ending up in the same
cluster, as this would yield a vanishing cut size. Specifying the size is also necessary, as otherwise the most likely solution of
the problem would consist of separating the lowest degree vertex from the rest of the graph, which is quite uninteresting.
This problem can be actually avoided by choosing a different measure to optimize for the partitioning, which accounts for
the size of the clusters. Some of these measures will be briefly introduced at the end of this section.

Graph partitioning is a fundamental issue in parallel computing, circuit partitioning and layout, and in the design ofmany
serial algorithms, including techniques to solve partial differential equations and sparse linear systems of equations. Most
variants of the graph partitioning problem are NP-hard. There are however several algorithms that can do a good job, even
if their solutions are not necessarily optimal [123]. Many algorithms perform a bisection of the graph. Partitions into more
than two clusters are usually attained by iterative bisectioning. Moreover, in most cases one imposes the constraint that the
clusters have equal size. This problem is calledminimum bisection and is NP-hard.

The Kernighan–Lin algorithm [124] is one of the earliest methods proposed and is still frequently used, often in
combination with other techniques. The authors were motivated by the problem of partitioning electronic circuits onto
boards: the nodes contained in different boards need to be linked to each other with the least number of connections. The
procedure is an optimization of a benefit function Q , which represents the difference between the number of edges inside
the modules and the number of edges lying between them. The starting point is an initial partition of the graph in two
clusters of the predefined size: such an initial partition can be random or suggested by some information on the graph
structure. Then, subsets consisting of equal numbers of vertices are swapped between the two groups, so that Q has the
maximal increase. The subsets can consist of single vertices. To reduce the risk to be trapped in local maxima of Q , the
procedure includes some swaps that decrease the function Q . After a series of swaps with positive and negative gains, the
partition with the largest value of Q is selected and used as starting point of a new series of iterations. The Kernighan–Lin
algorithm is quite fast, scaling as O(n2 log n) (n being as usual the number of vertices), if only a constant number of swaps
are performed at each iteration. The most expensive part is the identification of the subsets to swap, which requires the
computation of the gains/losses for any pair of candidate subsets. On sparse graphs, a slightly different heuristic allows to
lower the complexity toO(n2). The partitions found by the procedure are strongly dependent on the initial configuration and
other algorithms can do better. It is preferable to start with a good guess about the sought partition, otherwise the results
are quite poor. Therefore themethod is typically used to improve on the partitions found through other techniques, by using
them as starting configurations for the algorithm. The Kernighan–Lin algorithm has been extended to extract partitions in
any number of parts [125], however the run-time and storage costs increase rapidly with the number of clusters.

Another popular technique is the spectral bisection method [126], which is based on the properties of the spectrum of the
Laplacian matrix. Spectral clustering will be discussed more thoroughly in Section 4.4, here we focus on its application to
graph partitioning.

Every partition of a graph with n vertices in two groups can be represented by an index vector s, whose component si is
+1 if vertex i is in one group and �1 if it is in the other group. The cut size R of the partition of the graph in the two groups
can be written as

R = 1
4
sTLs, (18)

where L is the Laplacianmatrix and sT the transpose of vector s. Vector s can bewritten as s = �
i aivi, where vi, i = 1, . . . , n

are the eigenvectors of the Laplacian. If s is properly normalized, then

R =
⇥

i

a2i �i, (19)

However, the problem is that
we need to know how many
partitions we want, and how
big we want them to be!

Community Structure
Graph Partitioning

Graph partitioning is a very
straightforward way to divide
the network into communities.

S. Fortunato / Physics Reports 486 (2010) 75–174 79

4

20

22

21 9

28

3

27

18

19

23

29
7

17

24

33

16

30 34

26

25

32
8

2
1

12

11

6
5

13

14

31

10
15

Agent-based

Mathematical

Statistical Physics

Ecology

Models

Structure of RNA

a c

b

Fig. 2. Community structure in social networks. (a) Zachary’s karate club, a standard benchmark in community detection. The colors correspond to the
best partition found by optimizing the modularity of Newman and Girvan (Section 6.1). Reprinted figure with permission from Ref. [48].
© 2004, by IOP Publishing and SISSA.
(b) Collaboration network between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm of
Girvan and Newman (Section 5.1) and correspond quite closely to research divisions of the institute. Further subdivisions correspond to smaller research
groups, revolving around project leaders. Reprinted figure with permission from Ref. [12].
© 2002, by the National Academy of Science of the USA.
(c) Lusseau’s network of bottlenose dolphins. The colors label the communities identified through the optimization of a modified version of themodularity
of Newman andGirvan, proposed by Arenas et al. [49] (Section 12.1). The partitionmatches the biological classification of the dolphins proposed by Lusseau.
Reprinted figure with permission from Ref. [49].
© 2008, by IOP Publishing.

the president, respectively (indicated by squares and circles). The question is whether from the original network structure
it is possible to infer the composition of the two groups. Indeed, by looking at Fig. 2a one can distinguish two aggregations,
one around vertices 33 and 34 (34 is the president), the other around vertex 1 (the instructor). One can also identify several
vertices lying between the two main structures, like 3, 9, 10; such vertices are often misclassified by community detection
methods.

Fig. 2b displays the largest connected component of a network of collaborations of scientists working at the Santa Fe
Institute (SFI). There are 118 vertices, representing resident scientists at SFI and their collaborators. Edges are placedbetween
scientists that have published at least one paper together. The visualization layout allows to distinguish disciplinary groups.
In this network one observes many cliques, as authors of the same paper are all linked to each other. There are but a few
connections between most groups.

In Fig. 2c we show the network of bottlenose dolphins living in Doubtful Sound (New Zealand) analyzed by Lusseau [51].
There are 62 dolphins and edgeswere set between animals thatwere seen togethermore often than expected by chance. The
dolphins separated in two groups after a dolphin left the place for some time (squares and circles in the figure). Such groups
are quite cohesive, with several internal cliques, and easily identifiable: only six edges join vertices of different groups.
Due to this natural classification Lusseau’s dolphins’ network, like Zachary’s karate club, is often used to test algorithms for
community detection (Section 15.1).

Protein–protein interaction (PPI) networks are subject of intense investigations in biology and bioinformatics, as the
interactions between proteins are fundamental for each process in the cell [52]. Fig. 3 illustrates a PPI network of the rat
proteome [53]. Each interaction is derived by homology from experimentally observed interactions in other organisms. In
our example, the proteins interact very frequently with each other, as they belong to metastatic cells, which have a high
motility and invasiveness with respect to normal cells. Communities correspond to functional groups, i.e. to proteins having
the same or similar functions, which are expected to be involved in the same processes. The modules are labeled by the
overall function or the dominating protein class.Most communities are associated to cancer andmetastasis, which indirectly
shows how important detecting modules in PPI networks is.

In some cases, this may be a
reasonable thing to do

But in many cases, the
number and size of the
communities is exactly
what we want to find
out…

Community Structure
Graph Partitioning

Community Structure
Hierarchical Clustering

Hierarchical Clustering is a method for dividing
the network into clusters of sizes determined by
the network itself.

• Assign a weight, wij, to each pair of nodes in
the network, representing how closely related
they are

• Remove all of the edges in the network.
• Reconnect the nodes, starting with the edge

that has the highest weight
• As edges are added, the network is

connected back together (it may not be the
same way it was before, but that’s fine)

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

The result of this
process is summarized
by a dendrogram

Community Structure
Hierarchical Clustering

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

Community Structure
Hierarchical Clustering

nodes

Community Structure
Hierarchical Clustering

nodes

Each edge that is added is
represented by a connection in
the dendrogram

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

1

Community Structure
Hierarchical Clustering

nodes

As more edges are added,
the network becomes more
connected

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

1
2

Community Structure
Hierarchical Clustering

nodes

As more edges are added,
the network becomes more
connected

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

1

3
2

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

Community Structure
Hierarchical Clustering

nodes

As more edges are added,
the network becomes more
connected

1

3
2

4
5

6

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

Community Structure
Hierarchical Clustering

nodes

We stop when the nodes are
all connected into a single
component

1

3
2

4
5

6
7

8
9

10
11

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

B C E F G IA D H

Community Structure
Hierarchical Clustering

nodes

communities

By cutting the dendrogram at
a particular level, you divide
the network into communities

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

B EA C D

Community Structure
Hierarchical Clustering

nodes

communities

Cutting it higher up gives you
fewer, larger communities

increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
! by a factor !! with ! small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W " !
! " 0

!

"!A#! " $I # !A% # 1. [2]

For the sum to converge, we must choose ! smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.

7822 " www.pnas.org#cgi#doi#10.1073#pnas.122653799 Girvan and Newman

Community Structure
Hierarchical Clustering

nodes

communities

Cutting it higher up gives you
fewer, larger communities

A B

There are lots of weights that you could use
(including the weights you’ve already assigned
One example: the number of paths connecting
the two nodes, weighted by the length of the path

Community Structure
Hierarchical Clustering

A

B C

D

K

J
E I

HG
F

L

wAH=α
wAB=α+2α2
wAG=α2+2α3+α4

Another example: the number of paths between
the nodes that don’t have any of the same nodes

Community Structure
Hierarchical Clustering

A

B C

D

K

J
E I

HG
F

L

wAH=wAG=1
wAB=3
wHK=4

Community Structure
Hierarchical Clustering

A B C D K JE IHGF L

A

B C

D

K

J
E I

HG
F

L

Community Structure
Hierarchical Clustering

A B C D K JE IHGF L

A

B C

D

K

J
E I

HG
F

L

Community Structure
Hierarchical Clustering

A B C D K JE IHGF L

A

B C

D

K

J
E I

HG
F

L

Community Structure
Hierarchical Clustering

A B C D K JE IHGF L

A

B C

D

K

J
E I

HG
F

L

Community Structure
Hierarchical Clustering

A B C D K JE IHGF L

A

B C

D

K

J
E I

HG
F

L

There are two disadvantages to hierarchical
clustering:
1. It tends to chop off “leaf” nodes that are
peripheral to a community
2. It works best on networks that have a
naturally hierarchical (nested) structure
(which is not all networks)

Community Structure
Hierarchical Clustering

The Girvan-Newman Algorithm tweaks the hierarchical
clustering algorithm: it sequentially removes edges with
the highest edge betweenness

Community Structure
Girvan-Newman

Edge betweenness: The number of shortest paths
that go along a particular edge

Unlike hierarchical clustering, the Girvan Newman
Algorithm recalculates the edge betweenness on each
step

Community Structure
Girvan-Newman

1.Calculate betweenness for all edges

2.Remove the edge with the highest betweenness

3.Recalculate the betweenness of all remaining edges

4.Repeat until no edges remain

interesting is that it incorporates a known community structure.
The teams are divided into conferences containing around 8–12
teams each. Games are more frequent between members of the
same conference than between members of different confer-
ences, with teams playing an average of about seven intracon-
ference games and four interconference games in the 2000
season. Interconference play is not uniformly distributed; teams
that are geographically close to one another but belong to
different conferences are more likely to play one another than
teams separated by large geographic distances.

Applying our algorithm to this network, we find that it
identifies the conference structure with a high degree of success
(Fig. 5). Almost all teams are correctly grouped with the other
teams in their conference. There are a few independent teams
that do not belong to any conference—these tend to be grouped
with the conference with which they are most closely associated.
The few cases in which the algorithm seems to fail actually

correspond to nuances in the scheduling of games. For example,
the Sunbelt Conference is broken into two pieces and grouped
with members of the Western Athletic Conference. This happens
because the Sunbelt teams played nearly as many games against
Western Athletic teams as they did against teams in their own
conference. They also played quite a large fraction of their
interconference games against Mid-American teams. Naturally,
our algorithm fails in cases like this where the network structure
genuinely does not correspond to the conference structure. In all
other respects, however, it performs remarkably well.

Fig. 4. (a) The friendship network from Zachary’s karate club study (26) as
described in the text. Nodes associated with the club administrator’s faction
are drawn as circles, those associated with the instructor’s faction are drawn
as squares. (b) Hierarchical tree showing the complete community structure
for the network calculated by using the algorithm presented in this article. The
initial split of the network into two groups is in agreement with the actual
factions observed by Zachary, with the exception that node 3 is misclassified.
(c) Hierarchical tree calculated by using edge-independent path counts, which
fails to extract the known community structure of the network.

Fig. 5. Hierarchical tree for the network reflecting the schedule of regular-
season Division I college football games for year 2000. Nodes in the network
represent teams, and edges represent games between teams. Our algorithm
identifies nearly all of the conference structure in the network.

7824 ! www.pnas.org"cgi"doi"10.1073"pnas.122653799 Girvan and Newman

The result is, again, a dendrogram, which we can cut at
different levels to produce different partitions of the network

Community Structure
Girvan-Newman

Now we have two algorithms, producing two different
community structures. How do we tell which algorithm
is best?

Community Structure
Evaluation

→Answer: there is no definitive answer!

However, there are some tests we can perform that
give some insight...

in
cr

ea
si

ng
ly

la
rg

e
co

m
po

ne
nt

s
(c

on
ne

ct
ed

su
bs

et
s

of
ve

rt
ic

es
),

w
hi

ch
ar

e
ta

ke
n

to
be

th
e

co
m

m
un

iti
es

. B
ec

au
se

th
e

co
m

po
ne

nt
s

ar
e

pr
op

er
ly

ne
st

ed
, t

he
y

al
l c

an
be

re
pr

es
en

te
d

by
us

in
g

a
tr

ee

of
th

e
ty

pe
sh

ow
n

in
Fi

g.
2,

in
w

hi
ch

th
e

lo
w

es
t l

ev
el

at
w

hi
ch

tw
o

ve
rt

ic
es

ar
e

co
nn

ec
te

d
re

pr
es

en
ts

th
e

st
re

ng
th

of
th

e
ed

ge
th

at

re
su

lte
d

in
th

ei
r

fir
st

be
co

m
in

g
m

em
be

rs
of

th
e

sa
m

e
co

m
m

u-

ni
ty

. A
‘‘s

lic
e’

’ t
hr

ou
gh

th
is

tr
ee

at
an

y
le

ve
l g

iv
es

th
e

co
m

m
u-

ni
tie

s
th

at
ex

is
te

d
ju

st
be

fo
re

an
ed

ge
of

th
e

co
rr

es
po

nd
in

g

w
ei

gh
t

w
as

ad
de

d.
T

re
es

of
th

is
ty

pe
ar

e
so

m
et

im
es

ca
lle

d

de
nd

ro
gr

am
s

in
th

e
so

ci
ol

og
ic

al
lit

er
at

ur
e.

M
an

y
di

ff
er

en
t

w
ei

gh
ts

ha
ve

be
en

pr
op

os
ed

fo
r

us
e

w
ith

hi
er

ar
ch

ic
al

cl
us

te
ri

ng
al

go
ri

th
m

s.
O

ne
po

ss
ib

le
de

fin
iti

on
of

th
e

w
ei

gh
t

is
th

e
nu

m
be

r
of

no
de

-in
de

pe
nd

en
t

pa
th

s
be

tw
ee

n
ve

r-

tic
es

. T
w

o
pa

th
s

th
at

co
nn

ec
t t

he
sa

m
e

pa
ir

of
ve

rt
ic

es
ar

e
sa

id

to
be

no
de

-in
de

pe
nd

en
t i

f t
he

y
sh

ar
e

no
ne

of
th

e
sa

m
e

ve
rt

ic
es

ot
he

r
th

an
th

ei
r

in
iti

al
an

d
fin

al
ve

rt
ic

es
. O

ne
ca

n
si

m
ila

rl
y

al
so

co
un

t e
dg

e-
in

de
pe

nd
en

t p
at

hs
. I

t i
s k

no
w

n
(2

0)
th

at
th

e
nu

m
be

r

of
no

de
-in

de
pe

nd
en

t
(e

dg
e-

in
de

pe
nd

en
t)

pa
th

s
be

tw
ee

n
tw

o

ve
rt

ic
es

i a
nd

j i
n

a
gr

ap
h

is
eq

ua
l t

o
th

e
m

in
im

um
nu

m
be

r
of

ve
rt

ic
es

(e
dg

es
)

th
at

m
us

t
be

re
m

ov
ed

fr
om

th
e

gr
ap

h
to

di
sc

on
ne

ct
i a

nd
j f

ro
m

on
e

an
ot

he
r.

T
hu

s
th

es
e

nu
m

be
rs

ar
e

in

a
se

ns
e

a
m

ea
su

re
of

th
e

ro
bu

st
ne

ss
of

th
e

ne
tw

or
k

to
de

le
tio

n

of
no

de
s

(e
dg

es
)

(2
1)

.
N

um
be

rs
of

in
de

pe
nd

en
t

pa
th

s
ca

n
be

co
m

pu
te

d
qu

ic
kl

y
by

us
in

g
po

ly
no

m
ia

l-t
im

e
‘‘m

ax
-f

lo
w

’’
al

go
-

ri
th

m
s

su
ch

as
th

e
au

gm
en

tin
g

pa
th

al
go

ri
th

m
(2

2)
.

A
no

th
er

po
ss

ib
le

w
ay

to
de

fin
e

w
ei

gh
ts

be
tw

ee
n

ve
rt

ic
es

is
to

co
un

t
th

e
to

ta
l

nu
m

be
r

of
pa

th
s

th
at

ru
n

be
tw

ee
n

th
em

(a
ll

pa
th

s,
no

t
ju

st
th

os
e

th
at

ar
e

no
de

-
or

ed
ge

-in
de

pe
nd

en
t)

.

H
ow

ev
er

, b
ec

au
se

th
e

nu
m

be
r o

f p
at

hs
be

tw
ee

n
an

y
tw

o
ve

rt
ic

es

is
in

fin
ite

(u
nl

es
s i

t i
s z

er
o)

, o
ne

ty
pi

ca
lly

w
ei

gh
ts

pa
th

s o
f l

en
gt

h

!
by

a
fa

ct
or

!
!

w
ith

!
sm

al
l,

so
th

at
th

e
w

ei
gh

te
d

co
un

t o
f t

he

nu
m

be
r

of
pa

th
s

co
nv

er
ge

s
(2

3)
.

T
hu

s
lo

ng
pa

th
s

co
nt

ri
bu

te

ex
po

ne
nt

ia
lly

le
ss

w
ei

gh
t

th
an

th
os

e
th

at
ar

e
sh

or
t.

If
A

is
th

e

ad
ja

ce
nc

y
m

at
ri

x
of

th
e

ne
tw

or
k,

su
ch

th
at

A
ij

is
1

if
th

er
e

is
an

ed
ge

be
tw

ee
n

ve
rt

ic
es

i a
nd

j a
nd

0
ot

he
rw

is
e,

th
en

th
e

w
ei

gh
ts

in
th

is
de

fin
iti

on
ar

e
gi

ve
n

by
th

e
el

em
en

ts
of

th
e

m
at

ri
x

W
"

!
!

"
0!

"!
A

#!
"

$I
#

!
A

%#
1 .

[2
]

Fo
r

th
e

su
m

to
co

nv
er

ge
,

w
e

m
us

t
ch

oo
se

!
sm

al
le

r
th

an
th

e

re
ci

pr
oc

al
of

th
e

la
rg

es
t

ei
ge

nv
al

ue
of

A
.

B
ot

h
of

th
es

e
de

fin
iti

on
s o

f t
he

w
ei

gh
ts

gi
ve

re
as

on
ab

le
re

su
lts

fo
r

co
m

m
un

ity
st

ru
ct

ur
e

in
so

m
e

ca
se

s.
In

ot
he

r
ca

se
s

th
ey

ar
e

le
ss

su
cc

es
sf

ul
. I

n
pa

rt
ic

ul
ar

, b
ot

h
ha

ve
a

te
nd

en
cy

to
se

pa
ra

te

si
ng

le
pe

ri
ph

er
al

ve
rt

ic
es

fr
om

th
e

co
m

m
un

iti
es

to
w

hi
ch

th
ey

sh
ou

ld
ri

gh
tly

be
lo

ng
. I

f a
ve

rt
ex

is
, f

or
ex

am
pl

e,
co

nn
ec

te
d

to
th

e

re
st

of
a

ne
tw

or
k

by
on

ly
a

si
ng

le
ed

ge
th

en
, t

o
th

e
ex

te
nt

th
at

it
be

lo
ng

s
to

an
y

co
m

m
un

ity
, i

t s
ho

ul
d

cl
ea

rl
y

be
co

ns
id

er
ed

to

be
lo

ng
to

th
e

co
m

m
un

ity
at

th
e

ot
he

r
en

d
of

th
at

ed
ge

. U
nf

or
-

tu
na

te
ly

,
bo

th
th

e
nu

m
be

rs
of

in
de

pe
nd

en
t

pa
th

s
an

d
th

e

w
ei

gh
te

d
pa

th
co

un
ts

fo
r s

uc
h

ve
rt

ic
es

ar
e

sm
al

l a
nd

he
nc

e
si

ng
le

no
de

s
of

te
n

re
m

ai
n

is
ol

at
ed

fr
om

th
e

ne
tw

or
k

w
he

n
th

e
co

m
-

m
un

iti
es

ar
e

co
ns

tr
uc

te
d.

T
hi

s a
nd

ot
he

r p
at

ho
lo

gi
es

, a
lo

ng
w

ith

po
or

re
su

lts
fr

om
th

es
e

m
et

ho
ds

in
so

m
e

ne
tw

or
ks

w
he

re
th

e

co
m

m
un

ity
st

ru
ct

ur
e

is
w

el
l k

no
w

n
fr

om
ot

he
r s

tu
di

es
, m

ak
e

th
e

hi
er

ar
ch

ic
al

cl
us

te
ri

ng
m

et
ho

d,
al

th
ou

gh
us

ef
ul

, f
ar

fr
om

pe
rf

ec
t.

Ed
ge

‘‘B
et

w
ee

nn
es

s’
’

an
d

Co
m

m
un

it
y

St
ru

ct
ur

e.
T

o
si

de
st

ep
th

e

sh
or

tc
om

in
gs

of
th

e
hi

er
ar

ch
ic

al
cl

us
te

ri
ng

m
et

ho
d,

w
e

he
re

pr
op

os
e

an
al

te
rn

at
iv

e
ap

pr
oa

ch
to

th
e

de
te

ct
io

n
of

co
m

m
un

i-

tie
s.

In
st

ea
d

of
tr

yi
ng

to
co

ns
tr

uc
t a

m
ea

su
re

th
at

te
lls

us
w

hi
ch

ed
ge

s a
re

m
os

t c
en

tr
al

to
co

m
m

un
iti

es
, w

e
fo

cu
s i

ns
te

ad
on

th
os

e

ed
ge

s
th

at
ar

e
le

as
t c

en
tr

al
, t

he
ed

ge
s

th
at

ar
e

m
os

t ‘
‘b

et
w

ee
n’

’

co
m

m
un

iti
es

. R
at

he
r

th
an

co
ns

tr
uc

tin
g

co
m

m
un

iti
es

by
ad

di
ng

th
e

st
ro

ng
es

t e
dg

es
to

an
in

iti
al

ly
em

pt
y

ve
rt

ex
se

t,
w

e
co

ns
tr

uc
t

th
em

by
pr

og
re

ss
iv

el
y

re
m

ov
in

g
ed

ge
s

fr
om

th
e

or
ig

in
al

gr
ap

h.

V
er

te
x

be
tw

ee
nn

es
s h

as
be

en
st

ud
ie

d
in

th
e

pa
st

as
a

m
ea

su
re

of
th

e
ce

nt
ra

lit
y

an
d

in
fl

ue
nc

e
of

no
de

s
in

ne
tw

or
ks

.
Fi

rs
t

pr
op

os
ed

by
Fr

ee
m

an
(2

4)
, t

he
be

tw
ee

nn
es

s c
en

tr
al

ity
of

a
ve

rt
ex

i
is

de
fin

ed
as

th
e

nu
m

be
r

of
sh

or
te

st
pa

th
s

be
tw

ee
n

pa
ir

s
of

ot
he

r v
er

tic
es

th
at

ru
n

th
ro

ug
h

i.
It

is
a

m
ea

su
re

of
th

e
in

fl
ue

nc
e

of
a

no
de

ov
er

th
e

fl
ow

of
in

fo
rm

at
io

n
be

tw
ee

n
ot

he
r

no
de

s,

es
pe

ci
al

ly
in

ca
se

s
w

he
re

in
fo

rm
at

io
n

fl
ow

ov
er

a
ne

tw
or

k

pr
im

ar
ily

fo
llo

w
s

th
e

sh
or

te
st

av
ai

la
bl

e
pa

th
.

T
o

fin
d

w
hi

ch
ed

ge
s i

n
a

ne
tw

or
k

ar
e

m
os

t b
et

w
ee

n
ot

he
r p

ai
rs

of
ve

rt
ic

es
, w

e
ge

ne
ra

liz
e

Fr
ee

m
an

’s
be

tw
ee

nn
es

s
ce

nt
ra

lit
y

to

ed
ge

s a
nd

de
fin

e
th

e
ed

ge
be

tw
ee

nn
es

s o
f a

n
ed

ge
as

th
e

nu
m

be
r

of
sh

or
te

st
pa

th
s

be
tw

ee
n

pa
ir

s
of

ve
rt

ic
es

th
at

ru
n

al
on

g
it.

If

th
er

e
is

m
or

e
th

an
on

e
sh

or
te

st
pa

th
be

tw
ee

n
a

pa
ir

of
ve

rt
ic

es
,

ea
ch

pa
th

is
gi

ve
n

eq
ua

l w
ei

gh
t s

uc
h

th
at

th
e

to
ta

l w
ei

gh
t o

f a
ll

of
th

e
pa

th
s

is
un

ity
.

If
a

ne
tw

or
k

co
nt

ai
ns

co
m

m
un

iti
es

or

gr
ou

ps
th

at
ar

e
on

ly
lo

os
el

y c
on

ne
ct

ed
by

a
fe

w
in

te
rg

ro
up

ed
ge

s,

th
en

al
l s

ho
rt

es
t

pa
th

s
be

tw
ee

n
di

ff
er

en
t

co
m

m
un

iti
es

m
us

t
go

al
on

g
on

e
of

th
es

e
fe

w
ed

ge
s.

T
hu

s,
th

e
ed

ge
s

co
nn

ec
tin

g

co
m

m
un

iti
es

w
ill

ha
ve

hi
gh

ed
ge

be
tw

ee
nn

es
s.

B
y

re
m

ov
in

g

th
es

e
ed

ge
s,

w
e

se
pa

ra
te

gr
ou

ps
fr

om
on

e
an

ot
he

r a
nd

so
re

ve
al

th
e

un
de

rl
yi

ng
co

m
m

un
ity

st
ru

ct
ur

e
of

th
e

gr
ap

h.

T
he

al
go

ri
th

m
w

e
pr

op
os

e
fo

r
id

en
tif

yi
ng

co
m

m
un

iti
es

is

si
m

pl
y

st
at

ed
as

fo
llo

w
s:

Fi
g.

1.
A

sc
he

m
at

ic
re

pr
es

en
ta

ti
on

of
a

ne
tw

or
k

w
it

h
co

m
m

un
it

y
st

ru
ct

ur
e.

In
th

is
ne

tw
or

k
th

er
e

ar
e

th
re

e
co

m
m

un
it

ie
s

of
de

ns
el

y
co

nn
ec

te
d

ve
rt

ic
es

(c
ir

cl
es

w
it

h
so

lid
lin

es
),

w
it

h
a

m
uc

h
lo

w
er

de
ns

it
y

of
co

nn
ec

ti
on

s (
gr

ay
lin

es
)

be
tw

ee
n

th
em

.

Fi
g.

2.
A

n
ex

am
pl

e
of

a
sm

al
l h

ie
ra

rc
hi

ca
l c

lu
st

er
in

g
tr

ee
. T

he
ci

rc
le

s
at

th
e

bo
tt

om
re

pr
es

en
t t

he
ve

rt
ic

es
in

th
e

ne
tw

or
k,

an
d

th
e

tr
ee

sh
ow

s t
he

or
de

r i
n

w
hi

ch
th

ey
jo

in
to

ge
th

er
to

fo
rm

co
m

m
un

it
ie

s
fo

r
a

gi
ve

n
de

fi
ni

ti
on

of
th

e

w
ei

gh
t

W
ij

of
co

nn
ec

ti
on

s
be

tw
ee

n
ve

rt
ex

pa
ir

s.
78

22
"

w
w

w
.p

na
s.

or
g#

cg
i#

do
i#

10
.1

07
3#

pn
as

.1
22

65
37

99

G
ir

va
n

an
d

N
ew

m
an

Evaluating Algorithms
Random Networks

Test 1:
Generate random networks
with known communities
• Divide nodes into communities
• Link each node to each other
node with a set probability

• Probability of linking within your
community greater than outside:
pout < pin

Run your algorithm: do you
get out the same communities
you put in?

1. Calculate the betweenness for all edges in the network.
2. Remove the edge with the highest betweenness.
3. Recalculate betweennesses for all edges affected by the

removal.
4. Repeat from step 2 until no edges remain.
As a practical matter, we calculate the betweennesses by using

the fast algorithm of Newman (25), which calculates betweenness
for all m edges in a graph of n vertices in time O(mn). Because
this calculation has to be repeated once for the removal of each
edge, the entire algorithm runs in worst-case time O(m2n).
However, after the removal of each edge, we only have to
recalculate the betweennesses of those edges that were affected
by the removal, which is at most only those in the same
component as the removed edge. This means that running time
may be better than worst-case for networks with strong com-
munity structure (those that rapidly break up into separate
components after the first few iterations of the algorithm).

To try to reduce the running time of the algorithm further, one
might be tempted to calculate the betweennesses of all edges only
once and then remove them in order of decreasing betweenness.
We find, however, that this strategy does not work well, because
if two communities are connected by more than one edge, then
there is no guarantee that all of those edges will have high
betweenness—we only know that at least one of them will. By
recalculating betweennesses after the removal of each edge we
ensure that at least one of the remaining edges between two
communities will always have a high value.

Tests of the Method
In this section we present a number of tests of our algorithm on
computer-generated graphs and on real-world networks for
which the community structure is already known. In each case we
find that our algorithm reliably detects the known structure.

Computer-Generated Graphs. To test the performance of our
algorithm we have applied it to a large set of artificial, computer-
generated graphs similar to those depicted in Fig. 1. Each graph
was constructed with 128 vertices divided into four communities
of 32 vertices each. Edges were placed between vertex pairs
independently at random, with probability Pin for vertices be-
longing to the same community and Pout for vertices in different
communities, with Pout ! Pin. The probabilities were chosen so
as to keep the average degree z of a vertex equal to 16. This
produces graphs that have known community structure, but
which are essentially random in other respects. Feeding these
graphs into our algorithm, we measured the fraction of vertices
that were classified by the algorithm into their correct commu-
nities, as a function of the average number of intercommunity
edges per vertex. The results are shown in Fig. 3 (circles). As Fig.
3 shows, the algorithm performs nearly perfectly when zout ! 6,
classifying 90% or more of the vertices correctly. Only for zout !
6 does the fraction correctly classified start to fall off substan-
tially. In other words, the algorithm performs very well almost
to the point at which each vertex has as many intercommunity as
intracommunity connections.

For comparison we also show in Fig. 3 (squares) the fraction
of vertices classified correctly by a standard hierarchical clus-
tering calculation based on independent path counts computed
by using max-flow. As Fig. 3 shows, the performance of this
method is far inferior to that of our method.

Zachary’s Karate Club Study. Although computer-generated net-
works provide a reproducible and well controlled test bed for our
community-structure algorithm, it is clearly desirable to test the
algorithm on data from real-world networks as well. To this end,
we have selected two datasets representing real-world networks
for which the community structure is already known from other
sources. The first of these is drawn from the well known karate

club study of Zachary (26). In this study, Zachary observed 34
members of a karate club over a period of 2 years. During the
course of the study, a disagreement developed between the
administrator of the club and the club’s instructor, which ulti-
mately resulted in the instructor’s leaving and starting a new
club, taking about a half of the original club’s members with him.

Zachary constructed a network of friendships between mem-
bers of the club, using a variety of measures to estimate the
strength of ties between individuals. Here we use a simple
unweighted version of his network and apply our algorithm to it
in an attempt to identify the factions involved in the split of club.
Fig. 4a shows the network, with the instructor and the admin-
istrator represented by nodes 1 and 34, respectively. Fig. 4b shows
the hierarchical tree of communities produced by our method.
The most fundamental split in the network is the first one at the
top of the tree, which divides the network into two groups of
roughly equal size. This split corresponds almost perfectly with
the actual division of the club members after the break-up, as
revealed by which club they attended afterward. Only one node,
node 3, is classified incorrectly. In other words, the application
of our algorithm to the empirically observed network of friend-
ships is a good predictor of the subsequent social evolution of the
group.

For comparison we also have performed a traditional hierar-
chical clustering based on edge-independent paths for the karate
club network; the resulting tree is shown in Fig. 4c. As Fig. 4c
shows, this method correctly identifies the core vertex sets
{1,2,3} and {33,34} of the two communities, but otherwise there
appears to be little correlation with the actual split of the club,
indicating once again that our method is significantly more
accurate and sensitive than the standard method.

College Football. As a further test of our algorithm, we turn to the
world of United States college football. (Football here means
American football, not soccer.) The network we look at is a
representation of the schedule of Division I games for the 2000
season: vertices in the graph represent teams (identified by their
college names) and edges represent regular-season games be-
tween the two teams they connect. What makes this network

Fig. 3. The fraction of vertices correctly classified in computer-generated
graphs of the type described in the text, as the average number of intercom-
munity edges per vertex is varied. The circles are results for the method
presented in this article; the squares are for a standard hierarchical clustering
calculation based on numbers of edge-independent paths between vertices.
Each point is an average over 100 realizations of the graphs. Lines between
points are included solely as a guide to the eye.

Girvan and Newman PNAS ! June 11, 2002 ! vol. 99 ! no. 12 ! 7823

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Hierarchical

Girvan-Newman

Evaluating Algorithms
Random Networks

Evaluating Algorithms
Known community structure

Test 2:
Use a real social
network with known
community structure

Run your algorithm: do you
get out the communities you
know exist in the network?

Evaluating Algorithms
Zachary’s Karate Club

Karate Club with 34
members

During the study, the
club split in half due
to a disagreement

Based on the network,
can the algorithms
predict the actual split?

Girvan-Newman does quite well...

Evaluating Algorithms
Zachary’s Karate Club

The hierarchical algorithm does quite poorly...

Evaluating Algorithms
Zachary’s Karate Club

Note: the algorithms tell us about structure, not
behavior. They can miss idiosyncrasies…

Evaluating Algorithms
Zachary’s Karate Club

Node 1’s brother

Community Structure
But one issue: these algorithms let us cut the network apart

again and again…but when do we stop?

Community Structure

Community Structure

Community Structure

Community Structure
That is a problem if you don’t have some exogenous

information about community structure

34

1

2

3

4

5 6

7

8
9

10

11

12

13

14

15
16

17
18

19

20

21
22

23

24

25
26

27

28

29

30

31
32

33

Community Structure
What we want is to not find communities where they don’t exist,
but pull them out when they are unusual
One method: compare the partition you make on the actual network
with the partition you would get on a similar random network:

random network with the same number
of nodes and same number of linksKarate Club

34

1

2

3

4

5 6

7

8
9

10

11

12

13

14

15
16

17
18

19

20

21
22

23

24

25
26

27

28

29

30

31
32

33

Community Structure
When you partition your network, what fraction of the links are
between communities?

When you use the same partition on a random network, what
fraction are between communities?

random network with the same number
of nodes and same number of linksKarate Club

Modularity
Given a partition of the network into groups, modularity is a
measure of how cohesive those groups are, relative to a
random network

Sum over all
groups fraction of edges

in the network
that fall between
nodes in group i

fraction we would
expect in a random

network

In a random network:

0.3 < Q < 0.7

Q =
X

i

(eii � ēi)

Q =
X

i

(ēi � ēi) = 0

indicates significant community structure

34

1

2

3

4

5 6

7

8
9

10

11

12

13

14

15
16

17
18

19

20

21
22

23

24

25
26

27

28

29

30

31
32

33

Community Structure
For this partition of the Karate Club Graph, there are 8 links
between communities: ~11% of the links
In the random version, approximately 50% are
Modularity: 0.5 - 0.11 = .39

random network with the same number
of nodes and same number of linksKarate Club

But for larger networks, that would be very costly, computationally...

Modularity
One idea for choosing when to stop dividing the network: we could
just choose a division into communities that maximizes modularity (Q)

Community Structure
Newman’s Fast Algorithm

Newman’s “Fast Algorithm” uses a hierarchical
algorithm, using modularity as a weight

1.Start with all nodes separated
2.At each step, connect the two communities
that maximize modularity
3.Cut the dendrogram at the point in the
process where modularity was maximized

It works as well or better than the G-N algorithm on
random networks...

larity is Q=0. Values other than 0 indicate deviations from
randomness, and in practice values greater than about 0.3
appear to indicate significant community structure. A number
of examples are given in Ref. [6].
But this now suggests an alternative approach to finding

community structure. If a high value of Q represents a good
community division, why not simply optimize Q over all
possible divisions to find the best one? By doing this, we can
avoid the iterative removal of edges and cut straight to the
chase. The problem is that true optimization of Q is very
costly. The number of ways to divide n vertices into g non-
empty groups is given by the Stirling number of the second
kind Sn

!g", and hence the number of distinct community divi-
sions is #g=1

n Sn
!g". This sum is not known in closed form, but

we observe that Sn
!1"+Sn

!2"=2n!1 for all n!1, so that the sum
must increase at least exponentially in n. To carry out an
exhaustive search of all possible divisions for the optimal
value of Q would therefore take at least an exponential
amount of time, and is in practice infeasible for systems
larger than 20 or 30 vertices. Various approximate optimiza-
tion methods are available: simulated annealing, genetic al-
gorithms, and so forth. Here we consider a scheme based on
a standard “greedy” optimization algorithm, which appears
to perform well.
Our algorithm falls in the general category of agglomera-

tive hierarchical clustering methods [15,16]. Starting with a
state in which each vertex is the sole member of one of n
communities, we repeatedly join communities together in
pairs, choosing at each step the join that results in the great-
est increase (or smallest decrease) in Q. The progress of the
algorithm can be represented as a “dendrogram,” a tree that
shows the order of the joins (see Fig. 2 for an example). Cuts
through this dendrogram at different levels give divisions of
the network into larger or smaller numbers of communities
and we can select the best cut by looking for the maximal
value of Q.
Since the joining of a pair of communities between which

there are no edges at all can never result in an increase in Q,
we need only consider those pairs between which there are
edges, of which there will at any time be at most m, where m
is again the number of edges in the graph. The change in Q
upon joining two communities is given by

"Q = eij + eji ! 2aiaj = 2!eij ! aiaj" , !2"

which can clearly be calculated in constant time. The quan-
tities eij are initially equal to one-half of the corresponding
elements of the adjacency matrix of the network, i.e., to 1

2 for
vertex pairs that are joined by an edge and 0 for those that
are not. Following a join, some of the matrix elements eij
must be updated by adding together the rows and columns
corresponding to the joined communities, which takes worst-
case time O!n". Thus each step of the algorithm takes worst-
case time O!m+n". There are a maximum of n!1 join op-
erations necessary to construct the complete dendrogram and
hence the entire algorithm runs in time O(!m+n"n), or O!n2"
on a sparse graph. The algorithm has the added advantage of
calculating the value of Q as it goes along, making it espe-
cially simple to find the optimal community structure.

It is worth noting that our algorithm can be generalized
trivially to weighted networks in which each edge has a nu-
meric strength associated with it, by making the initial values
of the matrix elements eij equal to (a half of) those strengths;
otherwise the algorithm is as above and has the same running
time. The networks studied in this paper, however, are all
unweighted.

III. APPLICATIONS

As a first example of the working of our algorithm, we
have generated using a computer a large number of random
graphs with known community structure, which we then run
through the algorithm to quantify its performance. Each
graph consists of n=128 vertices divided into four groups of
32. Each vertex has on average zin edges connecting it to
members of the same group and zout edges to members of
other groups, with zin and zout chosen such that the total
expected degree zin+zout=16, in this case. As zout is increased
from small values, the resulting community structure be-
comes progressively weaker and the graphs pose greater and
greater challenges to the community-finding algorithm. In
Fig. 1 we show the fraction of vertices correctly assigned to
the four communities by the algorithm as a function of zout
[19]. As the figure shows, the algorithm performs well, cor-
rectly identifying more than 90% of vertices for values of
zout#6. Only when zout approaches the value 8 at which the
number of within- and between-community edges per vertex
is the same does the algorithm begin to fail. On the same plot
we also show the performance of the GN algorithm and, as
we can see, that algorithm performs slightly but measurably
better for smaller values of zout. For example, for zout=5 our
algorithm correctly identifies an average of 97.4(2)% of ver-
tices, while the older algorithm correctly identifies 98.9(1)%.
Both, however, clearly perform well.
Interestingly, for higher values of zout our algorithm per-

forms better than the older one, and we have come across a
few real-world networks in which this is the case also. Nor-

FIG. 1. The fraction of vertices correctly identified by our algo-
rithms in the computer-generated graphs described in the text. The
two curves show results for our algorithm (circles) and for the al-
gorithm of Girvan and Newman [5] (squares). Each point is an
average over 100 graphs.

M. E. J. NEWMAN PHYSICAL REVIEW E 69, 066133 (2004)

066133-2

Community Structure
Newman’s Fast Algorithm

It also splits the karate club network reasonably well
(though not as well as the G-N algorithm)

mally, however, the GN algorithm seems to have the edge,
and this should come as no great surprise. Our algorithm
bases its decisions on purely local information about indi-
vidual communities, while the GN algorithm uses nonlocal
information about the entire network—information derived
from betweenness scores. Since community structure is itself
fundamentally a nonlocal quantity, it seems reasonable that
one can do a better job of finding that structure if one has
nonlocal information at one’s disposal.
For systems small enough that the GN algorithm is com-

putationally tractable, therefore, we see no reason not to con-
tinue using it—it appears to give the best results. For systems
too large to make use of this approach, however, our algo-
rithm gives useful community structure information with
comparatively little effort.
We have applied our algorithm to a variety of real-world

networks also. We have looked, for example, at the “karate
club” network studied in [5], which represents friendships
between 34 members of a club at a U.S. university, as re-
corded over a two-year period by Zachary [17]. During the
course of the study, the club split into two groups as a result
of a dispute within the organization, and the members of one
group left to start their own club. In Fig. 2 we show the
dendrogram derived by feeding the friendship network into
our algorithm. The peak modularity is Q=0.381 and corre-
sponds to a split into two groups of 17, as shown in the
figure. The shapes of the vertices represent the alignments of
the club members following the dispute and, as we can see,
the division found by the algorithm corresponds almost per-
fectly to these alignments; only one vertex, number 10, is
classified wrongly. The GN algorithm performs similarly on
this task, but not better—it also finds the split but classifies
one vertex wrongly (although a different one, vertex 3). In
other tests, we find that our algorithm also successfully de-
tects the main two-way division of the dolphin social net-
work of Lusseau [6,18], and the division between black and
white musicians in the jazz network of Gleiser and Danon
[11].
As a demonstration of how our algorithm can sometimes

miss some of the structure in a network, we take another
example from Ref. [5], a network representing the schedule
of games between American college football teams in a
single season. Because the teams are divided into groups or

“conferences,” with intraconference games being more fre-
quent than interconference games, we have a reasonable idea
ahead of time about what communities our algorithm should
find. The dendrogram generated by the algorithm is shown in
Fig. 3, and has an optimal modularity of Q=0.546, which is
a little shy of the value 0.601 for the best split reported in
[5]. As the dendrogram reveals, the algorithm finds six com-
munities. Some of them correspond to single conferences,
but most correspond to two or more. The GN algorithm, by
contrast, finds all 11 conferences, as well as accurately iden-
tifying independent teams that belong to no conference.
Nonetheless, it is clear that our algorithm is quite capable of
picking out useful community structure from the network,
and of course it is much the faster algorithm. On the author’s
desktop computer the algorithm ran to completion in an im-
measurably small time—less than a hundredth of a second.
The algorithm of Girvan and Newman took a little over a
second.
A time difference of this magnitude will not present a big

problem in most practical situations, but performance rapidly
becomes an issue when we look at larger networks; we ex-
pect the ratio of running times to increase with the number of
vertices. Thus, for example, in applying our algorithm to the
1275-node network of jazz musician collaborations men-
tioned above, we found that it runs to completion in about
one second of CPU time. The GN algorithm by contrast
takes more than three hours to reach very similar results.
As an example of an analysis made possible by the speed

of our algorithm, we have looked at a network of collabora-
tions between physicists as documented by papers posted on
the widely used Physics E-print Archive at arxiv.org. The
network is an updated version of the one described in Ref.
[13], in which scientists are considered connected if they
have coauthored one or more papers posted on the archive.
We analyze only the largest component of the network,
which contains n=56 276 scientists in all branches of phys-
ics covered by the archive. Since two vertices that are un-
connected by any path are never put in the same community
by our algorithm, the small fraction of vertices that are not
part of the largest component can safely be assumed to be in
separate communities in the sense of our algorithm. Our al-
gorithm takes 42 min to find the full community structure.
Our best estimates indicate that the GN algorithm would take

FIG. 2. Dendrogram of the
communities found by our algo-
rithm in the “karate club” network
of Zachary [5,17]. The shapes of
the vertices represent the two
groups into which the club split as
the result of an internal dispute.

FAST ALGORITHM FOR DETECTING COMMUNITY… PHYSICAL REVIEW E 69, 066133 (2004)

066133-3

Community Structure
Newman’s Fast Algorithm

Community Finding
Big Picture

• Community structure is an interesting global
property of networks

• There are many algorithms that one can use to
distinguish communities

• The algorithms play off of different elements in
the network, and produce different results

• When you stop dividing is important, and not
obvious

