
Models of Social 
Networks 



Models of Social Networks
Why do we need models of social network structure?
A model is a way of simplifying something that is very 
complex…

which allows us to turn the specific into the general



Models and Modeling
To make that clearer, it helps to talk about models more 
generally…

and cows…
Discussion of cows adapted from Miller and Page (2007) 

Silly illustrations are my own.



Models and Modeling
Cows are surprisingly complex creatures…

chews cud

mammal

spots

eat grass

quadrapedal etc…



Models and Modeling
A model of the cow simplifies it by leaving out some of 
the details. 

Example: a spherical cow

Again: discussion of cows adapted from Miller and Page (2007) 
Silly illustrations are my own.



Models and Modeling
Building a model of a cow lets us answer general 
questions about cows, because it leaves out the 
details that vary from one cow to another, but don’t 
matter for the question at hand.

Any given model will leave some things out, but a 
good model will leave the right things in!



Models and Modeling
More accurate models may give you more insights, 
but they are also more complex, and thus harder to 
understand

There is often a tradeoff 
between complexity and 
understanding



Models and Modeling
Not all models are suited for answering all questions…
Different questions require different simplifications!

Grazing range per day: 100 ft2 

Probability turn left: 82%



All social science inquiry (including empirical work) 
involves modeling: explicitly or implicitly. 
Being a responsible consumer of social science 
research means understanding how to be critical of 
models 
This may be one of the most important things you 
learn in your time at CMU!

A Brief Soap Box Moment…



How to be critical of a (social science) model in three 
simple questions:

• What simplifying assumptions have been made? 
• Are those assumptions reasonable in the context 

of the question being explored? 
• How would things be different if those 

assumptions were changed?

A Brief Soap Box Moment…



Models of Social Networks
This is all particularly important in the context of social networks: 
we often have only one truly independent observation of any 
given network. Models allow us to consider what might make 
that network look the way it does. They also potentially let us 
generalize from what we observe in one context to other 
contexts.



Networks: The General
So what are some things we generally observe to be true 
in social networks?

• Small World (low average 
distance between nodes)
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Degree

• High Clustering 
(triadic closure)

• Long-tailed degree distribution 
(skewed right)

Strong links

Weak links



Network Models Summary
Empirical Erdös-Renyi Watts-

Strogatz
Preferential 
Attachment

Average 
Distance Low

Clustering High

Degree 
Distribution



Models of Social Networks
So! What are some ways that people have modeled 
social networks? 
• Models we’ll explore today: 

• Erdös-Renyi Random Graph 
• Watts-Strogatz Small World Network (Watts 

and Strogatz (1998)) 
• Preferential Attachment (Barabasi and Albert 

(1999))



Models of Social Networks: 
Erdös-Renyi Random Graphs
Oldest model of a network (1959) 
Procedure: 

• Select a node, i 
• For every other node in the network, connect 

to node i with probability p 
• Repeat for all nodes in the network 

In the end, every pair of nodes is connected with 
probability p

Result is called an Erdös-Renyi random graph (or 
simply a random graph)



Characteristics of Erdös-
Renyi Random Graphs

Erdös-Renyi Random Graphs have a low average 
distance:

Suppose you are linked to three 
people on campus at random. 

If those people also know three 
random people, then chances 
are, they are all different

3 at distance 1

~9 at distance 2
~27 at distance 3

The number of people who are x 
hops out from you is ⇡ dx

where d is the average degree of 
a person in the network→you aren’t very far 

from anyone!



Characteristics of Erdös-
Renyi Random Graphs

Erdös-Renyi Random Graphs have a low clustering 
coefficient

Again, if everyone knows three 
random people, then chances 
are that none of the people you 
know know each other.

→clustering coefficient very 
close to 0



Erdös-Renyi random graphs have a binomial degree 
distribution 
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Intuition: For each node, it is as if 
you do (N-1) Bernouli trials with 

probability p of success

The distribution of 
outcomes will be binomial 

Characteristics of Erdös-
Renyi Random Graphs

Average degree: (N-1)p

Symmetric



Network Models Summary
Empirical Erdös-Renyi Watts-

Strogatz
Preferential 
Attachment

Average 
Distance Low Low

Clustering High Low

Degree 
Distribution



Models of Social Networks:  The Giant 
Component in Random Networks

The Erdös-Renyi Model does not match many of the 
elements of real-world social networks…but it still 
gives us insight!

In particular, it can tell us about what happens as 
people become more connected to each other…



Models of Social Networks:  The Giant 
Component in Random Networks

Recall… 
• On an undirected network, a connected 

component is a group of nodes that can all be 
reached from each other via a path 

• The largest connected component  is…um…the 
largest one. 

• If the largest connected component remains 
proportional to number of nodes in the network, we 
call it the giant component 

→ as the name suggests, this component is often substantially larger 
than the rest. Hence…gigantic. 



Models of Social Networks:  The Giant 
Component in Random Networks

A question: what do you expect to happen to the size of 
the largest connected component in a random graph as 
we increase the number of connections?

When does it become a giant component? Does it 
happen gradually? Or all at once?



Models of Social Networks:  The Giant 
Component in Random Networks

An Agent Based Model (ABM): 
• Put down N agents (people) 
• Every time period, link two 

random people 

As the number of links increases, 
average degree increases and 
density increases largest connected  

component (red)
Load the net logo program: 
   Giant Component ER random.nlogo



LLC in redplot: fraction of nodes in the 
LCC vs average degree 

(updated with every step)

adjust the number of 
nodes in the network

To run: 
1) press “setup” 
2) press “go once” or “go”

“go once” takes one 
step (adds one link)

“go” continues to take 
steps (add links) until 

you press it again
(yes, you hit “go” to stop)

An ABM of how the giant component 
grows in an ER random network



LLC in red

adjust to 200 nodes

Now take a look at what happens: 
1) Set up the nodes (no links) — 200 is a good number 
2) Go one step at a time. Watch the LCC. How does it grow? 
3) When you get bored, hit “run”. What happens to the LCC? Is there a 

gradual change, or does it change all at once? 
4) Try it again. Do you get the same thing? What if you change the 

number of starting nodes? Do you have any idea what is going on?

fraction in 
the LCC vs 

average 
degree



Models of Social Networks:  The Giant 
Component in Random Networks

In a random network, the largest connected component 
remains small until the average degree (Np) reaches 1. Then 
a giant component suddenly emerges.
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This is surprising! There is 
no gradual transition from 
disconnected groups to 
cohesive whole!



Models of Social Networks:  The Giant 
Component in Random Networks

The intuition: CCs grow individually, then two or more connect 
together. That component jumps in size, and then has a 
much higher probability of getting links to new nodes.

average degree

1

0
1



Models of Social Networks:  The Giant 
Component in Random Networks

This is backed up empirically in my own work: in this 
emerging collaborative community, there was a transition 
point, where isolated groups transitioned to a single, 
cohesive whole.

So despite being inaccurate 
on a number of dimensions, 
this model gives us some 
important insights!



Empirically, we have a bit of a puzzle. Social 
networks have high clustering, giving them a highly 
local structure. 

But they also have a low average distance, making 
them globally very small…

Models of Social Networks:  
The Small World

So how is it possible for networks to be both local and 
global at the same time?

But what about clustering?



Empirically, social networks have a low average path 
length (like a random network) and high clustering 
(like a regular network)

So intuitively, we might want something between a 
random network and a regular network…

Models of Social Networks:  
The Small World



Models of Social Networks:  
Watts-Strogatz Small World

The Watts-Strogatz network: 
• Start with a regular 

network, degree d 
• Take each pair of nodes, 

and with probability p, 
add a link between them



Models of Social Networks:  
Watts-Strogatz Small World

The result is somewhere between a regular network 
and a random network



Models of Social Networks:  
Watts-Strogatz Small World

Figure from Watts and Strogatz (1998)

Regular Network

p = 0 p = 1

Random Network

0 < p < 1



A simulation of the Watts-Strogatz Small World 
Network

number of nodesnumber of 
connections the 
nodes start with

probability of 
rewiring each link

degree distribution 
(updated each 

time step) visualization



A simulation of the Watts-Strogatz Small World 
Network

rewire each link 
with probability p

this sets up the 
initial, random 

network—press 
this every time you 

want to rerun it

You start with a 
regular network

layout to look 
more natural

size and 
color by 
degree



Models of Social Networks:  
Watts-Strogatz Small World

What would you expect to be the effect of a small 
number of rewired links? What would happen to 
clustering? What would happen to average distance?



Models of Social Networks:  
Watts-Strogatz Small World

The result: adding a few random links dramatically decreases average 
distance in the regular network without affecting average clustering

Clustering
Average 
Distance

Figure from Watts and Strogatz (1998)



Models of Social Networks:  
Watts-Strogatz Small World

The reason that the regular network has a long average 
distance is that you have to traverse the entire ring to get 
from one side to the other…



Models of Social Networks:  
Watts-Strogatz Small World

Even a single rewired link can drastically shorten the 
distance between many pairs of nodes.



Models of Social Networks:  
Watts-Strogatz Small World

Most of the links in the 
network are still local, 
so clustering remains 
high.

It only takes a small 
number of long-
distance links to 
connect distant parts 
of the network.

The result is a “small world”: a social network that is both 
highly local and highly global! 



But note that the degree distribution doesn’t look like a 
real social network: because every link is rewired with 
equal probability, the small world network will have a 
symmetric degree distribution

Degree
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Models of Social Networks

Fun fact: When it’s random (p 
= 1), the distribution is the 
result of a set of Bernoulli 
random trials, so the degree 
distribution is binomial



Network Models Summary
Empirical Erdös-Renyi Watts-

Strogatz
Preferential 
Attachment

Average 
Distance Low Low Low

Clustering High Low High

Degree 
Distribution



Again, the small world network doesn’t match all of 
the characteristics of a real-world social network. But 
it still help us understand something useful!

Models of Social Networks

Social networks seem to be 
full of contradictions:  
• We have close-knit groups 

of friends, who tend to be 
friends with each other 

• But we are also tied to 
people in far-flung corners 
of the social world



But the Watts-Strogatz model gives us a way to 
resolve those contradictions

Models of Social Networks

Our tight social groups are 
our “short distance” links 

And it doesn’t take many 
“long distance” links to 
shorten the average distance 
between nodes in the 
network



Models of Social Networks

Ref: Mark Newman (2006)

Network Science Coauthorship Network

But now, what about that degree distribution?



Models of Social Networks: 
Preferential Attachment

Procedure: 
• Start with a handful of nodes 
• Each time step, add a new node, 

and link it to m existing nodes
• When entering, you are more likely 

to link to nodes with higher degree 
→ more precisely:   
Prob(link to node i) ∝ di

m = 2Now open: Preferential Attachment.nlogo

Preferential attachment is a model of network growth

• Repeat, adding one node at a time



A simulation of the 
preferential attachment model

number of 
connections per 

new node

add one new 
node

I’m bored:  
keep going

current degree 
distribution

Change size and color 
nodes to match degree



Now take a look at what happens: 
1) Set up the nodes (m = 3 to start) 
2) Hit “go-once” to add one node at a time. Every once in a while, 

resize and color the nodes by degree. What is happening to the 
network? To the degree distribution? 

3) When you get bored, hit “go”. What happens as more and more 
nodes are added? 

4) Try it again. Do you get the same thing? Now try it will a different 
value for “m” (the number of connections each new node makes). 
Do you have any idea what is going on?



Models of Social Networks: 
Preferential Attachment

So what does the preferential attachment model tell us 
about social networks?
It gives us one possible 
explanation for high degree 
nodes: links beget links!

This kind of positive feedback loop is called the 
“rich-get-richer” effect

Nodes that are already 
high degree attract even 
more links over time

Ref: Mark Newman (2006)



Models of Social Networks: 
Preferential Attachment

This rich-get-richer effect is found in all kinds of 
contexts:
Twitter accounts with lots of 
followers tend to attract more 
followers

People who have lots of money 
tend to make even more money

Videos that are popular 
tend to become even 
more popular

Ref: Mark Newman (2006)



Network Models Summary
Empirical Erdös-Renyi Watts-

Strogatz
Preferential 
Attachment

Average 
Distance Low Low Low Low

Clustering High Low High ~

Degree 
Distribution



Lessons for today
Models give us insight into the general by abstracting 
away from the specific. We’ve looked at three models 
that all give us some insight into why networks look 
the way they do:

Erdös-Renyi (random) networks: network growth is a non-
linear process 

Watts-Strogatz: a few long-distance connections make the 
world both locally clustered and globally small 

Preferential Attachment: when links beget links, the result is a 
network with a few individuals who have a large number of 
links 



Lessons for today
Also, different models of cows help us understand 
different things about cows

When someone tells you something about cows, make 
sure you understand the assumptions they are making 
about cows…or I suppose other things as well.


