

Centrality and Prestige

Some nodes are more important than others

graphic: Adamic lecture

But what it means to be "important" depends on the context: exchange, spread of information, brokerage opportunities, etc.

Centrality measures give us a way to quantify the different ways that a node can be important

Centrality and Prestige

Today:

- Tour through a variety of centrality measures:
- Degree
- Betweenness
- Closeness
- Eigenvector
- Look at how centrality is distributed: centralization
- Centrality on a directed network: prestige

Degree Centrality

- First notion: the person with the most connections is most important

Normalize by the maximum possible number of connections you could have: ($\mathrm{N}-1$)

Degree Centrality

$$
C_{d}\left(v_{i}\right)=\frac{1}{N-1} d_{i}
$$

Degree Centrality

$$
C_{d}\left(v_{i}\right)=\frac{1}{N-1} d_{i}
$$

Degree Centrality

- Degree centrality makes sense when sheer number of contacts is important:

- Number of supporters
- Number of confidants
- Audience size
- Number of trading partners
- Number of direct reports

Degree Centrality

- Clearly, there are some contexts where degree isn't exactly what we mean by "centrality"

- Suppose we are interested in who gets access to information?
- Or who can broker between different groups?

Closeness Centrality

- Second notion: the person in the middle of the action is most central

$$
C_{C}\left(v_{i}\right)=\frac{(N-1)}{\sum_{v_{j} \in G}\left(d\left(v_{i}, v_{j}\right)\right.} \quad \begin{gathered}
\text { Normalization (min } \\
\text { possible distance to } \\
\text { the } \mathrm{N}-1 \text { other nodes) }
\end{gathered}
$$

Total distance btwn
i and the other nodes

- Person with the highest closeness centrality has the shortest average distance to other nodes

Closeness Centrality

$$
C_{C}\left(v_{i}\right)=\frac{(N-1)}{\sum_{v_{j} \in G} d\left(v_{i}, v_{j}\right)}
$$

Closeness Centrality

Closeness Centrality

Closeness Centrality

Closeness Centrality

- Closeness centrality makes sense whenever direct access is important

- Access to information
- Opinion formation
- Spread of disease
- Adoption of new technology

Degree vs Closeness

Degree

Closeness

Betweenness Centrality

Third notion: the most important people are those you have to go through to get to others

So what fraction of the geodesics go through the node?

$$
C_{B}\left(v_{i}\right)=\frac{\sum_{j<k} \frac{g_{j k}\left(v_{i}\right)=\text { number of geodesics between }}{(N-1)(N-2) / 2} \quad \begin{array}{c}
g_{j k} \text { gand } \mathrm{k} \text { that go through } \mathrm{i}
\end{array}}{\begin{array}{c}
g_{j k} \\
\text { geodesics between } \mathrm{j} \\
\text { and } \mathrm{k}
\end{array}}
$$

Betweenness Centrality

Third notion: the most important people are those you have to go through to get to others

So what fraction of the geodesics go through the node?

$$
C_{B}\left(v_{i}\right)=\frac{\sum_{j<k} \frac{g_{j k}\left(v_{i}\right)}{g_{j k}}}{(N-1)(N-2) / 2}
$$

Betweenness Centrality

Third notion: the most important people are those you have to go through to get to others

So what fraction of the geodesics go through the node?

Betweenness Centrality

$$
C_{B}\left(v_{i}\right)=\frac{\sum_{j<k} \frac{g_{j k}\left(v_{i}\right)}{g_{j k}}}{(N-1)(N-2) / 2}
$$

- A and E are not on any shortest paths
- B and D are both on 3 shortest paths
- C is on 4 shortest paths

Betweenness Centrality

A: BC $\frac{0}{1}$

BE $\frac{0}{1} \quad$ CF $\frac{0}{1}$
BF $\frac{0}{1} \quad$ CG $\quad \frac{0}{1}$
$B G \frac{0}{1}$
CD $\stackrel{0}{1}$
CE $\frac{0}{1}$

DE $\frac{0}{1}$
DF $\quad \frac{0}{1}$
DG $\frac{0}{1}$

$$
\rightarrow C_{B}(A)=\frac{15 * 0}{15}
$$

Betweenness Centrality

$$
C_{B}\left(v_{i}\right)=\frac{\sum_{j<k} \frac{g_{j k}\left(v_{i}\right)}{g_{j k}}}{(N-1)(N-2) / 2}
$$

D: $A B \frac{0}{1}$
$B C \frac{0}{1} \quad C E \frac{1}{1}$
$E F$
$E G \frac{0}{1}$
$\frac{0}{1}$$\quad F G \frac{0}{1}$
AE $\frac{1}{1}$
$\begin{array}{llll}\text { AF } & \frac{1}{1} & \text { BF } \frac{1}{1} \\ \text { AG } \frac{1}{1} & \text { BG } \frac{1}{1}\end{array}$
AC $\frac{0}{1}$
BE $\frac{1}{1}$ CF $\frac{1}{1}$
$\rightarrow C_{B}(D)=\frac{6 * 0+9 * 1}{15}=\frac{3}{5}$

Betweenness Centrality

$$
C_{B}\left(v_{i}\right)=\frac{\sum_{j<k} \frac{g_{j k}\left(v_{i}\right)}{g_{j k}}}{(N-1)(N-2) / 2}
$$

Betweenness Centrality

$$
C_{B}\left(v_{i}\right)=\frac{\sum_{j<k} \frac{g_{j k}\left(v_{i}\right)}{g_{j k}}}{(N-1)(N-2) / 2}
$$

Betweenness Centrality

$$
C_{B}\left(v_{i}\right)=\frac{\sum_{j<k} \frac{g_{j k}\left(v_{i}\right)}{g_{j k}}}{(N-1)(N-2) / 2}
$$

$\begin{array}{llll}A C & \frac{1}{1} & C D & \frac{1}{2} \\ A D & \frac{1}{1} & C E & \frac{0}{1}\end{array}$
AE $\frac{1}{1}$

$$
\rightarrow C_{B}(A)=\frac{3(1)+\frac{1}{2}+2(0)}{6}=\frac{3.5}{6}
$$

Betweenness Centrality

$$
C_{B}\left(v_{i}\right)=\frac{\sum_{j<k} \frac{g_{j k}\left(v_{i}\right)}{g_{j k}}}{(N-1)(N-2) / 2}
$$

$\begin{array}{llll}A C & \frac{1}{1} & C D & \frac{1}{2} \\ A D & \frac{1}{1} & C E & \frac{0}{1}\end{array}$
AE $\frac{1}{1}$

$$
\rightarrow C_{B}(A)=\frac{3(1)+\frac{1}{2}+2(0)}{6}=\frac{3.5}{6}
$$

Betweenness Centrality

- Betweenness centrality make sense when you gain from bridging between different groups

- Brokering between groups
- Control of information
- Innovation
- Collaboration

Eigenvector Centrality

- Fourth notion: you are more important if you're connected to important people
- For example:
- a small twitter account followed by someone with a large audience
- a entrepreneur who knows Jack Dorsey
- an aide to the president
- This is harder to calculate (I would not make you calculate it on an exam)

Eigenvector Centrality

Such a centrality measure must satisfy: $\mathbf{A x}=\lambda \mathbf{x}$
the sum of the
centralities of you
leading eigenvalue of the matrix A

- A node's eigenvector centrality is proportional to the centrality of it's neighbors
- A node can have higher eigenvector centrality because:
- They have more connections
- They have more important connections

Network Centralization

- Centralization: a measure of how centrality is distributed in the network

\rightarrow An attempt to quantify how centralized the network is as a whole

Difference between a node's centrality and the maximum centrality in the network

$$
C_{D}(G)=\frac{\sum_{v_{i} \in G}\left[\left[C_{D}\left(v^{*}\right)-C_{D}\left(v_{i}\right)\right]\right.}{((N-1)]}
$$

Normalization: if everyone had maximum centrality

Centralization

$$
C_{D}(G)=\frac{\sum_{v_{i} \in G}\left[C_{D}\left(v^{*}\right)-C_{D}\left(v_{i}\right)\right]}{(N-1)}
$$

$$
C_{D}(G)=\frac{5}{36}
$$

$$
C_{D}(G)=\frac{4}{5}
$$

Centralization

$$
C_{C}(G)=\frac{\sum_{v_{i} \in G}\left[C_{C}\left(v^{*}\right)-C_{C}\left(v_{i}\right)\right]}{(N-1)}
$$

Centralization

$$
C_{B}(G)=\frac{\sum_{v_{i} \in G}\left[C_{B}\left(v^{*}\right)-C_{B}\left(v_{i}\right)\right]}{(N-1)}
$$

Centralization

Centralization tells us about how influence is spread across the network

Example: Financial Trading Networks

High centralization: one node dominates the network

Low centralization:
trades are more evenly distributed

Comparing Centrality Measures

Degree

Closeness

Betweenness

The three are clearly related, but they each get at something slightly different

Directed Networks: "Prestige"

- Centrality in directed networks is called "prestige"
- This is sometimes a fine name:
- admiration or trust
- influence
- friendship
- trade
- But depending on the type of link, it might be misleading:
- money lending
- giving advice
- hatred or distrust

Directed Networks: "Prestige"

- Measure 1: directed version of in-degree
- A website that is linked to often has high prestige
- A person who is frequently nominated for a reward has high prestige

$$
C_{D}\left(v_{i}\right)=\frac{d_{i n}\left(v_{i}\right)}{(N-1)}
$$

High

Low

Directed Networks: "Prestige"

- Measure 2: Influence range
- The influence range is what fraction of the nodes in the network can reach you via directed paths

Influence Range: 12/14

Directed Networks: "Prestige"

A note on directed geodesics:

- You need to follow the arrows when tracing a path through the network
- The shortest directed path may not be the geodesic on the related undirected network
- The directed geodesic from j to k may be shorter than the directed geodesic from k to j

Directed Networks: "Prestige"

Directed Betweenness: Almost exactly the same as betweenness, but with directed geodesics and normalized in a directed way

Number of directed
$C_{B}\left(v_{i}\right)=\frac{1}{(N-1)(N-2)} \sum_{j, k} \frac{g_{j k}\left(v_{i}\right)}{g_{j k}} \sim_{\substack{\text { Total number of directed } \\ \text { geodesics between } \mathrm{j} \text { and } \mathrm{k}}}^{\substack{\text { geodesics between } \mathrm{j} \text { and } \mathrm{k} \\ \text { containing } \mathrm{i}}}$

Directed Betweenness Centrality: 0

Summing up...

There are lots of ways for a node to be "central" to a network

- Degree
- Closeness
- Betweenness
- etc!
- Different types of centrality will be relevant in different contexts.
- Which is most interesting is a judgment call!

